vsp

February 14, 2023

Project No. 19119232

Maureen Hatfield MC-127 VCP-CA Section, Team 1, Remediation Division Texas Board on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087

UPDATED BASELINE SOIL ASSESSMENT - UNION PACIFIC RAILROAD ENGLEWOOD INTERMODAL YARD, HOUSTON, TEXAS, POST-CLOSURE CARE PERMIT NO. HW-50343; INDUSTRIAL SWR NO. 31547

Dear Ms. Hatfield,

WSP USA Inc. (WSP), on behalf of Union Pacific Railroad Company (UPRR), is providing this letter report summarizing the additional sampling activities conducted as part of the baseline soil assessment (BSA) within the Englewood Intermodal Yard (EIY or the Site) (IHW Permit 50343). The previous sampling results of the BSA were provided to the Texas Commission on Environmental Quality (TCEQ) in the following letters:

- Baseline Soil Assessment Union Pacific Railroad Englewood Intermodal Yard, Houston, Texas, Post-Closure Care Permit No. HW-50343; Industrial SWR No. 31547 dated September 19, 2022, and
- Updated Baseline Soil Assessment Union Pacific Railroad Englewood Intermodal Yard, Houston, Texas, Post-Closure Care Permit No. HW-50343; Industrial SWR No. 31547 dated December 2, 2022.

Based on the analytical results of the soil samples collected in August and October 2022 detailed in the letters above, arsenic concentrations were not delineated along the southern property boundary to the applicable Texas Risk Reduction Program (TRRP) residential assessment levels (RALs) in surface soils at one location (BLS-26 (7.5-10)). As a result, UPRR proposed to collect additional soil samples along the southern property boundary near soil boring BLS-26 to further evaluate the lateral and vertical extent of the arsenic concentrations to the applicable RAL. The results from the additional sampling conducted in December 2022 are discussed below.

ADDITIONAL SAMPLING FOR BASELINE SOIL ASSESSMENT

Two additional soil borings (BLS-30 and BLS-31) were advanced (**Figure 1**) approximately 15 feet southwest and southeast, respectively from soil boring BLS-26. Three soil samples were collected at each location on December 15, 2022. Soil borings were advanced using a track-mounted direct-push technology (DPT) rig to a depth of 15 feet below ground surface (bgs). Soil samples were collected from the soil cores, field screened using a photoionization detector (PID), and visually logged using the United States Soil Classification System (USCS). Prior to sampling, the PID was calibrated using 100 parts per million (ppm) by volume isobutylene standard. As detailed in the December 2, 2022 letter, soil samples were collected from 0 to 2.5 feet bgs, from 7.5 to 10 feet bgs, and from 12.5 to 15 feet bgs (between 10 feet bgs and the top of the saturated zone (A-TZ) for vertical delineation in this area).

Soils encountered generally consisted of gravel and sand fill from ground surface to about 2 feet below grade overlying brown to gray silty clay to the base of each boring with occasional thin (less than 0.5 feet thick) gravel

seams or lenses. Saturated conditions were not encountered in the top 15 feet in borings BLS-30 or BLS-31. No field PID headspace exceeded background in the soils sampled in December 2022.

Soil samples collected from the assessment were analyzed for arsenic using the SW-846 Method 6020. Samples were collected in laboratory-supplied containers and placed on wet ice in an insulated cooler to reduce and maintain sample temperature at 4 ±2 degrees Celsius. Soil sample BLS-30 (12.5-15) was further analyzed for arsenic concentrations using the synthetic precipitation leaching procedure (SPLP) by EPA Test Method 1312 (SPLP extraction) and EPA Method 6020 (arsenic analysis of the extract). A chain-of custody record accompanied the samples through receipt at the ALS Environmental Laboratory in Houston, Texas. The data usability summary prepared by GHD and the laboratory analytical report for soil samples are provided in Attachment A.

Soil borings were plugged with bentonite chips in accordance with the State of Texas regulations. Investigation derived wastes (IDW), consisting of soil cuttings from drilling and decontamination fluids, were placed inside a labeled 55-gallon steel drum that was staged at a secure location on-site. IDW was profiled and disposed of in accordance with state and federal rules and regulations.

DATA EVALUATION

WSP evaluated the soil data by comparing the analytical results to TRRP residential Tier 1 and/or site-specific Tier 2 PCLs (last revised: March 2022), where applicable. Tier 1 PCLs used were based on the TCEQ TRRP Tier 1 residential Soil PCLs conservatively assuming a 30-acre source area. The RALs are derived from the lower concentration of the TRRP Tier 1 residential Total Soil Combined (^{Tot}Soil_{Comb}) and Tier 1 or Tier 2 Soil-to-Groundwater Ingestion (^{GW}Soil_{Ing}) PCLs. In the event the published Texas-Specific Background Concentration (TSBC) values for metals are higher than the residential PCL, the TSBC is used as the applicable RAL. Tier 2 PCLs used for this evaluation were from the PCLs developed and presented in the Affected Property Assessment Report (APAR) dated October 15, 2010 (PBW, 2010). For the soil-to-groundwater pathway evaluation, arsenic concentrations from the SPLP analysis were compared to the arsenic Tier 1 Residential groundwater ingestion pathway PCL (^{GW}GW_{Ing}=0.01 mg/L).

Soil Analytical Results

An updated summary of the soil analytical results for the previous sampling events and the samples collected in December 2022 is provided on Table 1. Arsenic results are presented on **Figure 2** and described below:

Residential TotSoilComb PCL Evaluation

Arsenic concentrations in soil samples collected as part of the baseline assessment do no exceed the residential ^{Tot}Soil_{Comb} PCL (24 mg/kg).

Soil-to-Groundwater Pathway

Based on the previous sampling events, six soil samples collected as part of the BSA had arsenic concentrations greater than the Tier 2 ^{GW}Soil_{Ing} PCL (5.9 mg/kg). Of the six additional soil samples collected from the two soil borings in December 2022 near the south perimeter of the area for delineation, one of the samples (BLS-30 (12.5-15)) exceeded the Tier 2 ^{GW}Soil_{Ing} PCL with a concentration of 7.38 mg/kg (Table 1).

As stated in previous BSA letters (September 2022 and December 2022), lines of evidence indicate that the soil arsenic concentrations are protective of the uppermost A-Transmissive Zone (ATZ) groundwater bearing unit. This is supported by the arsenic concentrations detected in groundwater samples collected from nearby A-Transmissive Zone (ATZ) monitoring wells MW-51A and MW-97A (Figure 2) being below the Tier 1 Residential ^{GW}GW_{Ing} PCL (0.01 mg/L). However, to further evaluate the soil-to-groundwater pathway, soil sample BLS-30

(12.5-15)) was analyzed for potential leachability for arsenic using the SPLP extract from the soil sample. The arsenic SPLP result for BLS-30 (12.5-15) was 0.00415 mg/L with a J qualifier indicating the concentration was estimated and below the sample quantitation limit. The arsenic SPLP result for BLS-30 (12.5-15) is an order of magnitude below the Tier 1 Residential $^{GW}GW_{Ing}$ PCL of 0.01 mg/L, therefore supporting that the soil concentration (7.38 mg/kg) is protective of the shallow groundwater.

The 30 TAC §350.75(i)(7)(C) rule states that a determination that soils are protective and will attain the soil response objectives for groundwater protection shall be based on lines of evidence such as release information and soil sample data, groundwater data, and appropriate leachate results. Using the weight-of-evidence approach detailed above demonstrates that the existing arsenic concentrations in soils attain the soil response objectives for groundwater protection in this area.

Based on this evaluation, the arsenic concentrations in soils in the area including the concentration detected near the south property boundary at BLS-30 are considered protective of the shallow groundwater, and thereby are delineated to the appropriate assessment level per 30 TAC 350.75(i)(7)(A).

CONCLUSIONS

The additional investigation activities for the baseline soil assessment were conducted to evaluate the lateral and vertical extent of arsenic concentrations to applicable RALs in the soils at the Site. Based on the analytical results of the additional soil sampling conducted in December 2022, one soil sample (BLS-30 (12.5-15)) of the additional six samples collected had an arsenic concentration (7.38 mg/kg) that exceeded the Tier 2 ^{GW}Soil_{Ing} PCL of 5.9 mg/kg. Arsenic concentrations in all soil samples collected as part of the BSA did not exceed the residential ^{Tot}Soil_{Comb} PCL (24 mg/kg). Sample BLS-30 (12.5-15) was further analyzed for potential leachability for arsenic using the SPLP extract, and the result (0.00415J mg/L) is an order of magnitude below the Tier 1 Residential ^{GW}GW_{Ing} PCL of 0.01 mg/L. Based on multiple lines of evidence, including the SPLP result and absence of arsenic in groundwater in nearby wells, the arsenic concentrations in soils in the area are considered protective of the shallow groundwater and thereby are delineated to the appropriate assessment level.

RESPONSE ACTIONS

As detailed in the September 19, 2022 Baseline Soil Assessment letter, only two soil samples collected in this area of the EIY as part of this BSA had detected concentrations that exceeded their respective Residential ^{Tot}Soil_{Comb} PCLs: soil sample BLS-09(2-3.5) with total petroleum hydrocarbon (TPH) concentrations at 6,900 mg/kg and one soil sample BLS-10(0-2.5) with lead concentrations at 797 mg/kg. Neither of these concentrations exceed their respective commercial/industrial ^{Tot}Soil_{Comb} PCLs. As a result, the proposed response action for the Houston Wood Preserving Works site of a land use restriction for commercial/industrial land use and restricting future use of groundwater on-site through filing a deed recordation as detailed in the Response Action Plan (Revision 5, August 2020) Worksheet 2.0 is appropriate to satisfy the response action objectives for this area of the EIY. Therefore, no modifications or revisions are necessary to the current Response Action Plan for the Houston Wood Preserving Works site.

If you have any questions or need additional information, please feel free to call me at (512) 671-3434 or Mr. Kevin Peterburs of UPRR at (414) 267-4164.

Sincerely,

WSP USA Inc.

N

Michelle Hermiston, P.G. *Lead Consultant, Geologist*

Eric C. Matzner, P.G. Vice President - Director, Hydrogeologist

Attachments: Table 1: Analytical Data Figure 1: Soil Boring Location Map Figure 2: Subsurface Soil Arsenic Concentration Map

TABLE

Location ID	TRRP Tie Residenti		TRRP Tic Commercia PC	I/Industrial	Texas Specific	BLS-01	BLS-01	BLS-02	BLS-02	BLS-03	BLS-03	BLS-04	BLS-04	BLS-05	BLS-05	BLS-06	BLS-06	BLS-07	BLS-07	BLS-08	BLS-08	BLS-09	BLS-09	BLS-10	BLS-10	BLS-10	BLS-11
Sample Interval					Background	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	6.5-8	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	2-3.5	7.5-10	0-2.5	7.5-10	12.5-15	0-2.5
Sample Date	Tot Soil Comb	^{GW} Soil _{Ing}	Tot Soil Comb	^{GW} Soil _{Ing}	Concentration	8/22/2022	8/22/2022	8/22/2022	8/22/2022	8/22/2022	8/22/2022	8/22/2022	8/22/2022	8/22/2022	8/22/2022	8/22/2022	8/22/2022	8/23/2022	8/23/2022	8/23/2022	8/23/2022	8/23/2022	8/23/2022	8/23/2022	8/23/2022	10/11/2022	8/23/2022
Constituent	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals	iiig/kg	mg/ng	mg/kg	mg/ng	iiig/kg	iiig/kg	iiig/itg	mg/ng	mg/kg	mg/kg	mg/ng	iiig/itg	mg/ng	mg/ng	iiig/itg	iiig/itg	mg/ng	mg/kg	iiig/itg	mg/ng	mg/ng	iiig/kg	mg/kg	mg/ng	ilig/itg	mg/ng	ing/itg
Arsenic	24	2.5	200	2.5	5.9	2.65	0.905	1.66	0.656	3.73	0.721	1.55	0.442 J	1.16	0.234 J	2.84	1.42	3.4	1.67	0.783	0.808	9.61	1.01	3.26	9.29	0.658	3.99
Arsenic SPLP (mg/L)*	NA	NA	NA	NA	NA	NM	NM	NM	NM	NM	NM																
Lead	500	275	1600	275	15	43.7	7	13.3	6.85	15.4	6.17	9.59	3.75	8.76	4.31	31	6.2	48.4	8.92	14.8	12	162	6.64	797	12.6	NM	286
Volatile Organic Compounds	500	215	1000	215	15	43.7	1	13.3	0.05	15.4	0.17	9.59	3.75	0.70	4.31	31	0.2	40.4	0.92	14.0	12	102	0.04	191	12.0	INIVI	200
	20	0.031	74	0.021			< 0.00055	< 0.0006	< 0.00002	< 0.00055	< 0.00057	< 0.00057	< 0.00054	< 0.00057	< 0.00057		< 0.00054	< 0.00050	< 0.00057	< 0.00052	< 0.00059	< 0.00004	< 0.00054	< 0.00048		NM	
1,2 Dichloroethane	30		71	0.031	NA	< 0.00059											< 0.00054								< 0.00055		< 0.00096
Benzene	69	0.1	130	0.1	NA	< 0.00049		< 0.0005	< 0.00052			< 0.00047		< 0.00047				< 0.00049			< 0.0005		< 0.00045		< 0.00046	NM	< 0.0008
Chlorobenzene	320	6.5	540	6.5	NA	< 0.00059	< 0.00055	< 0.0006	< 0.00063	< 0.00055	< 0.00057	< 0.00057		< 0.00057			< 0.00054	< 0.00058	< 0.00057		< 0.00059	< 0.00064		< 0.00048	< 0.00055	NM	< 0.00096
Ethylbenzene	5300	44	17000	44	NA	< 0.00069	< 0.00064	< 0.0007	< 0.00073	< 0.00065	< 0.00067		< 0.00063	< 0.00066	< 0.00067	< 0.0009	< 0.00063	< 0.00068	< 0.00066	< 0.00062	< 0.00069		< 0.00063	< 0.00057	< 0.00065	NM	< 0.0011
Methylene chloride	1500	0.022	8600	0.021	NA	< 0.00099	< 0.00092	< 0.001		< 0.00092	< 0.00096	< 0.00095	< 0.0009	< 0.00095	< 0.00095	< 0.0013	< 0.0009		< 0.00095		< 0.00099	< 0.0011	< 0.0009	< 0.00081	< 0.00092	NM	< 0.0016
Toluene	5400	43	29000	43	NA	< 0.00059	< 0.00055	< 0.0006	< 0.00063	< 0.00055	< 0.00057		< 0.00054	< 0.00057	< 0.00057	< 0.00077	< 0.00054	< 0.00058	< 0.00057	< 0.00053	< 0.00059	< 0.00064	< 0.00054		< 0.00055	NM	< 0.00096
Xylenes, Total	3700	730	6500	730	NA	< 0.00099	< 0.00092	< 0.001	< 0.001	< 0.00092	< 0.00096	< 0.00095	< 0.0009	< 0.00095	< 0.00095	< 0.0013	< 0.0009	< 0.00097	< 0.00095	< 0.00089	< 0.00099	< 0.0011	< 0.0009	< 0.00081	< 0.00092	NM	< 0.0016
Semi-Volatile Organic Compo	unds																										
1,2-Diphenylhydrazine	5.4	0.23	20	0.51	NA	<0.014	<0.0014	<0.0013	<0.0014	<0.0013	<0.0013	< 0.0013	<0.0013	<0.0013	<0.0013	<0.012	<0.0013	<0.013	< 0.0013	< 0.063	<0.066	<0.013	<0.0013	<0.013	<0.064	NM	<0.013
2,4-Dimethylphenol	1300	18	14000	53	NA	<0.041	<0.0041	< 0.0039	<0.0041	<0.0038	< 0.0040	<0.0038	< 0.0038	<0.0038	<0.0038	< 0.037	< 0.0039	< 0.039	<0.0040	<0.19	<0.20	<0.038	< 0.0039	<0.038	<0.19	NM	<0.040
2,4-Dinitrotoluene	6.9	0.022	28	0.049	NA	<0.011	< 0.0011	< 0.0011	< 0.0011	<0.0010	< 0.0011	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.010	<0.0011	< 0.011	< 0.0011	<0.051	<0.054	< 0.010	< 0.0011	<0.010	<0.053	NM	<0.011
2,6-Dinitrotoluene	6.9	0.018	28	0.04	NA	<0.041	< 0.0041	< 0.0039	< 0.0041	< 0.0038	< 0.0040	< 0.0038	< 0.0038	< 0.0038	< 0.0038	< 0.037	< 0.0039	< 0.039	< 0.0040	<0.19	<0.20	< 0.038	< 0.0039	< 0.038	<0.19	NM	<0.040
2-Chloronaphthalene	5000	5000	50000	15000	NA	<0.016	< 0.0016	< 0.0015	< 0.0016	< 0.0015	< 0.0016	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.015	< 0.0015	< 0.016	< 0.0016	< 0.074	< 0.079	< 0.015	< 0.0015	< 0.015	<0.076	NM	<0.016
2-Methylnaphthalene	250	130	2500	380	NA	< 0.0062		< 0.00059	< 0.00062	0.0024 J	< 0.00061		< 0.00057	0.0021 J	< 0.00058	< 0.0057	< 0.00059	< 0.0060	< 0.00060	<0.028	< 0.030	0.37	< 0.00059	0.059	< 0.029	NM	0.13
4,6-Dinitro-2-methylphenol	6.7	0.0021	68	0.54	NA	< 0.026	< 0.0026	<0.0025	< 0.0026	< 0.0024	< 0.0026	< 0.0024	< 0.0024	< 0.0024	< 0.0024	< 0.024	< 0.0025	<0.025	< 0.0025	<0.12	< 0.13	< 0.024	< 0.0025	< 0.024	<0.12	NM	<0.026
4-Nitrophenol	130	0.089	1400	0.27	NA	<0.020	< 0.0020	<0.0023	< 0.0020	<0.0024	< 0.0023	<0.0024	<0.0024	<0.0024	<0.0024	<0.024	< 0.0023	<0.023	< 0.0023	<0.12	<0.10	<0.024	<0.0020	<0.024	<0.12	NM	<0.020
Acenaphthene	3000	1800	37000	5200	NA	<0.024		<0.00025	<0.00024	< 0.00022	< 0.0020		<0.0022	<0.0022	< 0.00022	<0.0022	< 0.0025	<0.025	<0.00020	<0.028	< 0.030	0.45	<0.0022	0.022	< 0.029	NM	0.020
Acenaphthylene	3800	3000	37000	9100	NA	<0.002	< 0.00003	<0.00039	< 0.00002	<0.00038	< 0.0001	<0.00038	<0.00037	<0.00030	<0.00038	<0.0037	<0.0012	<0.000	<0.0012	<0.028	<0.050	<0.012	<0.00039	0.038 0.015 J	<0.029	NM	<0.012
		3400	190000	10000		< 0.0012		< 0.0012		<0.0012			< 0.00057	<0.0012			< 0.00059	0.0012	<0.0012	< 0.037		0.012	0.0012	0.015 5	< 0.038	NM	0.012
Anthracene	18000				NA						< 0.00061				< 0.00058	0.014 J					< 0.030						
Benz(a)anthracene	41	130	170	300	NA	<0.020	< 0.0020	< 0.0019	< 0.0020	0.0032 J	< 0.0019	<0.0019	<0.0018	0.0023 J	< 0.0019	0.026 J	0.0031 J	0.044	< 0.0019	< 0.091	< 0.097	0.34	< 0.0019	0.13	< 0.093	NM	0.12
Benzo(a)pyrene	4.1	57	17	57	NA	< 0.012	< 0.0013	< 0.0012	< 0.0012	< 0.0012	< 0.0012	0.0026 J	< 0.0011	< 0.0012	< 0.0012	< 0.011	0.0028 J	0.033 J	< 0.0012	< 0.057	< 0.060	< 0.012	< 0.0012	0.16	< 0.058	NM	0.12
Bis(2-chloroethoxy)methane	2.5	0.077	6.2	0.17	NA	<0.011	<0.0011	<0.0011	< 0.0011	<0.0010	<0.0011	<0.0010	< 0.0010	<0.0010	<0.0010	<0.010	<0.0011	< 0.011	<0.0011	< 0.051	<0.054	<0.010	<0.0011	<0.010	< 0.053	NM	<0.011
Bis(2-ethylhexyl)phthalate	43	1200	560	1200	NA	<0.021	0.0056 J	<0.0020	0.0040 J	0.0094	0.0060 J	0.0074 J	0.0041 J	0.013	0.0069 J	< 0.019	0.013	0.21	0.0027 J	< 0.097	<0.10	0.22	0.0038 J	0.17	<0.099	NM	0.036 J
Chrysene	4100	12000	17000	26000	NA	<0.010		<0.00095	<0.0010	0.0021 J	<0.00097		<0.00092	0.0027 J	<0.00093	0.023 J	0.0032 J	0.043	<0.00097	<0.046	<0.048	0.28	<0.00094	0.13	<0.047	NM	0.12
Dibenzofuran	270	250	2700	740	NA	<0.0087						<0.00081					<0.00083		<0.00085	<0.040	<0.042		<0.00082	0.037 J	<0.041	NM	0.059
Di-n-butyl phthalate	6200	25000	68000	74000	NA	<0.015		<0.0014				<0.0014			<0.0014		<0.0014	<0.014	<0.0015	<0.068	<0.073	<0.014		<0.014	<0.070	NM	<0.015
Fluoranthene	2300	14000	25000	43000	NA	<0.014		0.0030 J				<0.0013		<0.0013	<0.0013		<0.0013	0.077	<0.0013	<0.063	<0.066	1.4	0.0017 J	0.35	<0.064	NM	0.38
Fluorene	2300	2200	25000	6600	NA	<0.014		<0.0013			<0.0013	<0.0013		<0.0013	<0.0013		<0.0013	<0.013	<0.0013	<0.063	<0.066	0.34	<0.0013	0.083	<0.064	NM	0.14
Naphthalene	120	230	190	680	NA	<0.0075	< 0.00075	< 0.00071	<0.00075	<0.00070	< 0.00073	<0.00070	< 0.00069	<0.00070	< 0.00070	<0.0068	<0.00071	< 0.0072	< 0.00073	0.047 J	0.054 J	0.095	<0.00071	0.047	<0.035	NM	0.078
Nitrobenzene	34	0.49	57	1.5	NA	<0.011	<0.0011	<0.0011	<0.0011	<0.0010	<0.0011	<0.0010			<0.0010		<0.0011	<0.011	<0.0011	<0.051	<0.054	<0.010	<0.0011	<0.010	<0.053	NM	<0.011
N-Nitrosodiphenylamine	570	19	1900	42	NA	<0.0087		< 0.00083	<0.00087		<0.00085	< 0.00081	<0.00080		<0.00081		< 0.00083	< 0.0084	<0.00085	<0.040	<0.042		< 0.00082	<0.0080	<0.041	NM	0.015 J
Pentachlorophenol	0.73	0.12	32	0.12	NA	<0.041		< 0.0039		<0.0038	< 0.0040	< 0.0038		<0.0038	<0.0038		< 0.0039	< 0.039	< 0.0040	<0.19	<0.20	< 0.038	< 0.0039	< 0.038	<0.19	NM	<0.040
Phenanthrene	1700	3100	19000	9300	NA	<0.019		< 0.0018			< 0.0018			< 0.0017	0.028	0.025 J	0.039	0.033 J	< 0.0018	< 0.085	< 0.091	0.98	0.0069	0.34	<0.088	NM	0.46
Phenol	950	45	1400	130	NA	< 0.014			< 0.0014			< 0.0013		< 0.0013	< 0.0013		< 0.0013	< 0.013	< 0.0013	< 0.063	< 0.066	< 0.013		< 0.013	< 0.064	NM	0.94
Pyrene	1700	8400	19000	25000	NA							< 0.00070					< 0.00071		< 0.00073		< 0.036	1.3	0.0014 J		< 0.035	NM	0.35
Total Petroleum Hydrocarbon		0400	10000	20000		-0.0070	-0.00010	0.0027 0	-0.00070	-0.00070	-0.00010	-0.00070	-0.00003	-0.00010	-0.00010	3.000	-0.00071	0.001	-0.00070	-0.004	-0.000	1.0	0.00140	0.00	-0.000		5.00
			1		NIA.		-7.4	<7.0	<7.0	-7.4	-74	<7.0	-6.0	-7.0	<7.0	<7.0	47.0	<7.0	-7.4	-6.6	<7.2	<60	-6.0	-6.0	-6.7	NIN 4	<10
nC6 to nC12					NA	<8.8	<7.4	<7.9	<7.9	<7.4	<7.1	<7.2	<6.9	<7.2	<7.0	<7.9	<7.2	<7.3	<7.1	<6.6	<7.3	<69	<6.8	<6.9	<6.7	NM	<12
>nC12 to nC28					NA	<12	<9.7	<10	<10	<9.8	<9.3	<9.4	<9.1	<9.5	<9.3	21 J	<9.5	<9.7	<9.4	<8.7	<9.6	4100	<9.0	220	<8.8	NM	160
>nC28 to nC35					NA	<12	<9.7	<10	<10	<9.8	<9.3	<9.4	<9.1	<9.5	<9.3	49 J	<9.5	<9.7	<9.4	<8.7	<9.6	2800	<9.0	230	<8.8	NM	230
Total Petroleum Hydrocarbon	5,797	NC	58000	NC	NA	<8.8	<7.4	<7.9	<7.9	<7.4	<7.1	<7.2	<6.9	<7.2	<7.0	70	<7.2	<7.3	<7.1	<6.6	<7.3	6900	<6.8	450	<6.7	NM	390
	0,101				1	10.0		1.0					0.0		110						110		-0.0	100			

Notes:

(1) Concentrations were compared to the lower of the TotSoilcomb and GWSoilIng TCEQ TRRP Tier 1 or Tier 2 Residential Soil PCLs (30 acre source area) (March 2022). Tier 2 calculations were presented in the Affected Property Assessment Report (APAR) dated October 15, 2010 (PBW, 2010).

(2) Metal concentrations were compared to the higher of the TRRP Tier 1 PCL and the Texas-Specific

Background Concentrations (TSBC).

(3) Lead concentrations were compared to TRRP Tier 2 PCLs based on the formula and default values presented in TCEQ Guidance Document Establishing Critical Protective Concentration Levels (PCLs) for Lead-Affected Soils (TCEQ, August 2001).

(4) Constituent detections above the sample detection limit (SDL) have been bolded.

(5) Concentrations exceeding the RAL are highlighted yellow. The applicable action level is highlighted gray.

(6) J = Analyte detected below the quantitation limit.

(7) TPH PCL based on TPH mixture PCL for an unresolved complex mixture (UCM) as detailed in the Interim NAPL and TPH-NAPL Assessment Report (Golder, 2020).

(8) Arsenic SPLP results compared to TRRP Tier 1 ^{GW}GW_{ING} PCL (0.01 mg/L)

NC- Not Calculated - According to the TCEQ TRRP Tier 1 TPH PCL Calculator for TCEQ Method 1006 Data, the GW-Soil-Ing PCL not needed based on the Hazard Index (Golder, 2020).

NM- Not Measured

Table 1 **Baseline Soil Assessment** Union Pacific Railroad - Englewood Intermodal Yard; Schneider Lease Property Houston, TX

I			TRRP Tie	er 1 or 2		<u>г</u>																								
	TRRP T	ier 1 or 2	Commercia			BLS-11	BLS-12	BLS-12	BLS-12	BLS-13	BLS-13	BLS-14	BLS-14	BLS-15	BLS-15	BLS-16	BLS-16	BLS-17	BLS-17	BLS-18	BLS-18	BLS-19	BLS-19	BLS-20	BLS-20	BLS-21	BLS-21	BLS-22	BLS-22	BLS-23
Location ID			PC		Texas Specific		DLO-12	DEC-12	DL0-12	DLO-10	DEC-10	DLO-14	DE0-14	DEC-10	DE0-10	DE0-10	BLO-10	DEG-17	DE0-17	DEC-10	BE0-10		DEC-15		DL0-20	DL0-21	DLO-21	DLO-22		DL0-20
Sample Interval					Background	7.5-10	0-2.5	7.5-10	12.5-15	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5
Sample Date	Tot Soil _{Comb}	^{GW} Soil _{Ing}	Tot Soil _{Comb}	^{GW} Soil _{Ing}	Concentration																								8/24/2022	
Constituent	mg/kg	mg/kg	mg/kg	mg/kg	ma/ka	ma/ka	mg/kg	mg/kg	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ma/ka	ma/ka	mg/kg	mg/kg	mg/kg		
Metals	mg/ng	mg/kg	ilig/kg	mg/kg	mg/ng	mg/kg	mg/ng	mg/ng	mg/ng	mg/kg	mg/ng	ing/itg	mg/ng	mg/ng	mg/kg	mg/ng	mg/kg	mg/ng	ilig/kg	ilig/kg	mg/ng	mg/ng	mg/ng	mg/ng	mg/kg	ing/kg	mg/ng	iiig/ikg	iiig/itg	mg/ng
Arsenic	24	2.5	200	2.5	5.9	5.01	2.55	6.16	0.776	0.846	1.38	3.13	0.87	2.6	1.67	0.984	3.42	13.1	0.822	1.62	0.727	3.15	1.93	8.54	0.554	1.53	1.45	1.8	5.5	1.72
Arsenic SPLP (mg/L)*	NA	NA	NA	NA	NA	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Lead	500	275	1600	275	15	8.91	190	12	NM	9.58	6.36	56.2	7.2	261	7.85	8.62	8.04	19.3	4.94	7.77	5.91	54.8	8.28	170	5.25	34.7	8.51	43	12.7	157
Volatile Organic Compounds																		•		•			•							
1,2 Dichloroethane	30	0.031	71	0.031	NA	< 0.00054	< 0.00087	< 0.00055	NM	< 0.00047	< 0.00055	< 0.00054	< 0.00056	< 0.00038	< 0.00055	< 0.00055	< 0.00057	< 0.00056	< 0.00058	< 0.00055	< 0.00059	< 0.00068	< 0.00056	< 0.00079	< 0.00053	< 0.00073	< 0.00055	< 0.00053	< 0.00056	< 0.00064
Benzene	69	0.1	130	0.1	NA	< 0.00045	< 0.00073	< 0.00046	NM	< 0.00039	< 0.00046	< 0.00045	< 0.00047	< 0.00032	< 0.00046	< 0.00046	< 0.00048	< 0.00047	< 0.00048	< 0.00046	< 0.00049	< 0.00057	< 0.00047	< 0.00066	< 0.00045	< 0.00061	< 0.00046	< 0.00045	< 0.00047	< 0.00054
Chlorobenzene	320	6.5	540	6.5	NA	< 0.00054	< 0.00087	< 0.00055	NM	< 0.00047	< 0.00055	< 0.00054	< 0.00056	< 0.00038	< 0.00055	< 0.00055	< 0.00057	< 0.00056	< 0.00058	< 0.00055	< 0.00059	< 0.00068		< 0.00079	< 0.00053	< 0.00073	< 0.00055	< 0.00053	< 0.00056	< 0.00064
Ethylbenzene	5300	44	17000	44	NA	< 0.00063	< 0.001	< 0.00064	NM	< 0.00055	< 0.00064	< 0.00064		< 0.00044								< 0.0008	< 0.00066	< 0.00092		< 0.00085			< 0.00066	
Methylene chloride	1500	0.022	8600	0.021	NA	< 0.0009	< 0.0015	< 0.00091	NM	< 0.00078	< 0.00092	< 0.00091		< 0.00064			< 0.00096					< 0.0011	< 0.00094	< 0.0013						
Toluene	5400	43	29000	43	NA	< 0.00054	< 0.00087	< 0.00055	NM	< 0.00047	< 0.00055					< 0.00055			< 0.00058			< 0.00068		< 0.00079					< 0.00056	
Xylenes, Total	3700	730	6500	730	NA	< 0.0009	< 0.0015	< 0.00091	NM	< 0.00078	< 0.00092	< 0.00091	< 0.00094	< 0.00064	< 0.00092	< 0.00091	< 0.00096	< 0.00094	< 0.00096	< 0.00092	< 0.00098	< 0.0011	< 0.00094	< 0.0013	< 0.00089	< 0.0012	< 0.00091	< 0.00089	< 0.00094	< 0.0011
Semi-Volatile Organic Compo				0.51						.0.00.10		1.0			.0.007		.0.0010		.0.0010		.0.0010		.0.0010							
1,2-Diphenylhydrazine	5.4	0.23	20	0.51	NA	<0.0013	< 0.014	<0.0013	NM	< 0.0013	< 0.064	<1.3	< 0.066	<1.3	< 0.065	< 0.063	< 0.0013	< 0.0013	<0.0013	< 0.0013	< 0.0013	< 0.013	<0.0013	< 0.013	<0.0013	<0.013	< 0.014	< 0.013		< 0.013
2,4-Dimethylphenol	1300	18	14000	53	NA	< 0.0039	< 0.041	< 0.0040	NM	< 0.0038	<0.19	<4.0	<0.20	<4.0	< 0.20	<0.19	< 0.0040	< 0.0039	< 0.0039	< 0.0039	< 0.0040	< 0.038	< 0.0039	< 0.039	<0.0038	< 0.039	< 0.041	< 0.040		< 0.039
2,4-Dinitrotoluene 2,6-Dinitrotoluene	6.9 6.9	0.022	28	0.049	NA NA	<0.0011	<0.011 <0.041	<0.0011	NM	<0.0010	<0.053 <0.19	<1.1 <4.0	< 0.054	<1.1	< 0.053	<0.052	<0.0011 <0.0040		<0.0011	<0.0011	<0.0011	<0.010	<0.0011	<0.011 <0.039	<0.0010	<0.011	< 0.011	<0.011		<0.011
2,6-Dinitrotoluene 2-Chloronaphthalene	6.9 5000	0.018 5000	28 50000	15000	NA NA	<0.0039 <0.0015	<0.041	<0.0040 <0.0016	NM NM	<0.0038 <0.0015	<0.19	<4.0 <1.6	<0.20 <0.078	<4.0 <1.6	<0.20 <0.077	<0.19 <0.075	<0.0040	<0.0039 <0.0015	<0.0039 <0.0015	<0.0039 <0.0015	<0.0040 <0.0016	<0.038 <0.015	<0.0039 <0.0015	<0.039	<0.0038 <0.0015	<0.039 <0.015	<0.041 <0.016	<0.040 <0.016	<0.0038 <0.0015	<0.039 <0.015
2-Methylnaphthalene	250	130	2500	380	NA	<0.0015	0.010 0.020 J	< 0.0016	NM	<0.0015	< 0.078	< 0.61	<0.078	<0.60	<0.077	<0.075			< 0.0015			<0.015		0.015	< 0.0015	<0.0059	< 0.016			
4,6-Dinitro-2-methylphenol	6.7	0.0021	68	0.54	NA	< 0.00039	<0.026	< 0.00000	NM	<0.00038	<0.029	<2.6	<0.030	<2.5	<0.030	<0.029	<0.00000	< 0.00039		<0.00039	<0.0026	<0.0037	<0.00039	< 0.025	< 0.00037	<0.0039	<0.0002	<0.0000	<0.00038	<0.0039
4-Nitrophenol	130	0.089	1400	0.34	NA	<0.0023	<0.020	<0.0023	NM	<0.0024	<0.12	<2.3	<0.13	<2.3	<0.12	<0.12	<0.0023			<0.0023	<0.0020	<0.024		<0.023	<0.0024	<0.023	<0.020	<0.023		<0.023
Acenaphthene	3000	1800	37000	5200	NA	< 0.00059	0.033 J	< 0.00020	NM	< 0.00058	<0.029	< 0.61	< 0.030	< 0.60	< 0.030	<0.029			< 0.00059			< 0.0057			< 0.00022	< 0.0059	< 0.020			< 0.0059
Acenaphthylene	3800	3000	37000	9100	NA	< 0.0012	< 0.012	< 0.0012	NM	< 0.0012	<0.058	<1.2	< 0.060	<1.2	< 0.059	< 0.058			< 0.0012		< 0.0012	<0.0007	< 0.0012	< 0.012	< 0.0011	<0.012	< 0.012	< 0.012		< 0.012
Anthracene	18000	3400	190000	10000	NA	< 0.00059	0.077	< 0.00060	NM	< 0.00058	< 0.029	<0.61	< 0.030	<0.60	< 0.030	< 0.029			< 0.00059			<0.0057		0.086		0.0063 J	< 0.0062			< 0.0059
Benz(a)anthracene	41	130	170	300	NA	< 0.0019	0.11	< 0.0019	NM	< 0.0019	< 0.093	<1.9	< 0.097	<1.9	< 0.095	< 0.092	< 0.0019		0.0039 J		< 0.0019			0.054	< 0.0018	0.028 J		< 0.019	< 0.0019	
Benzo(a)pyrene	4.1	57	17	57	NA	<0.0012	0.13	< 0.0012	NM	0.0039	< 0.058	<1.2	< 0.060	<1.2	< 0.059	< 0.058	< 0.0012		0.0020 J		< 0.0012	< 0.011	< 0.0012	0.081	< 0.0011	0.033 J		< 0.012		<0.012
Bis(2-chloroethoxy)methane	2.5	0.077	6.2	0.17	NA	<0.0011	<0.011	<0.0011	NM	<0.0010	< 0.053	<1.1	< 0.054	<1.1	<0.053	<0.052	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.010	<0.0011	<0.011	<0.0010	<0.011	<0.011	<0.011	<0.0010	<0.011
Bis(2-ethylhexyl)phthalate	43	1200	560	1200	NA	0.0038 J	<0.021	0.0039 J	NM	0.016	<0.099	<2.1	<0.10	<2.1	<0.10	<0.098	0.0028 J	<0.0020	0.0024 J	<0.0020	0.0091 J	<0.020	<0.0020	<0.020	0.0028 J	<0.020	<0.021	<0.020	<0.0020	<0.020
Chrysene	4100	12000	17000	26000	NA	<0.00094	0.09	< 0.00096		< 0.00093	<0.047	<0.97	<0.048	<0.97	<0.048							<0.0092			<0.00091	0.031 J			< 0.00093	
Dibenzofuran	270	250	2700	740	NA			<0.00084				<0.85	<0.042	<0.85	<0.042						<0.00085	<0.0080	<0.00083	0.049	<0.00080	<0.0083		<0.0084	<0.00082	
Di-n-butyl phthalate	6200	25000	68000	74000	NA			0.0025 J		0.0026 J		<1.5	<0.072	<1.4	<0.071				<0.0014						0.0026 J	<0.014	<0.015	<0.014	0.0029 J	
Fluoranthene	2300	14000	25000	43000	NA	<0.0013		0.0015 J		< 0.0013		<1.3	< 0.066	<1.3	< 0.065				0.0088						<0.0013		< 0.014	<0.013	0.0014 J	
Fluorene	2300	2200	25000	6600	NA		0.028 J			<0.0013	< 0.064	<1.3	< 0.066	<1.3	< 0.065				< 0.0013						<0.0013	<0.013	< 0.014	<0.013	< 0.0013	
Naphthalene	120	230	190	680	NA			< 0.00072		< 0.00069	< 0.035	<0.73	< 0.036	<0.72	< 0.036				< 0.00071						< 0.00069				< 0.00070	
Nitrobenzene	34	0.49	57	1.5	NA	< 0.0011	< 0.011	< 0.0011	NM	< 0.0010	< 0.053	<1.1	< 0.054	<1.1	< 0.053				<0.0011			< 0.010		< 0.011	< 0.0010	< 0.011	< 0.011	< 0.011		
N-Nitrosodiphenylamine	570	19	1900	42	NA			< 0.00084		< 0.00081	< 0.041	< 0.85	< 0.042	< 0.85	< 0.042				< 0.00083						<0.00080				< 0.00082	
Pentachlorophenol	0.73	0.12	32	0.12	NA	< 0.0039	< 0.041	<0.0040		< 0.0038	<0.19	<4.0	< 0.20	<4.0	< 0.20	<0.19			< 0.0039			< 0.038		< 0.039	< 0.0038	<0.039	< 0.041	<0.040	< 0.0038	
Phenanthrene Rhanal	1700	3100	19000	9300	NA	<0.0018	0.17	0.0019 J	NM	<0.0017	<0.088	<1.8	<0.091	<1.8	< 0.089	< 0.086			0.0051			<0.017		0.13		0.025 J	<0.018	<0.018	< 0.0017	
Phenol	950	45	1400	130	NA NA	<0.0013	<0.014 0.17	<0.0013	NM	<0.0013	<0.064	<1.3	<0.066	<1.3	< 0.065	< 0.063			< 0.0013			<0.013 0.0083 J		<0.013	<0.0013 <0.00069	<0.013	<0.014	< 0.013	<0.0013	
Pyrene Total Petroleum Hydrocarbor	1700	8400	19000	25000	INA	<0.00070	0.17	0.0013 J	NM	0.00081 J	<0.035	<0.73	<0.036	<0.72	<0.036	<0.035	0.0016 J	<0.00071	0.0074	<0.00070	0.0011 J	0.0083 J	<0.00071	0.17	<0.00069	0.037 J	<0.0074	<0.0072	0.0013 J	0.018 J
		1			NIA	-6.7	<0.7	<7.5	NINA	40.0	-6.0	<7.0	<7.0	47.0	-74	-7.4	-7.4	47.4	-6.4	46.0	<7 4	-77	46.0	<0.7	-6.0	< 8.0	<7.0	<0.0	-6 F	<0.0
nC6 to nC12					NA	<6.7	<9.7	<7.5	NM	<6.6	<6.9	<7.2	<7.0	<7.6	<7.1	<7.1	<7.1	<7.1	<6.1	<6.6	<7.1	<7.7	<6.8	<8.7	<6.9	<8.9	<7.2	<9.6	<6.5	<8.6
>nC12 to nC28					NA	<8.8	14 J	<9.8	NM	<8.7	<9.0	<9.5	<9.2	900	14 J	<9.4	<9.4	<9.3	<8.1	<8.7	<9.3	<10	<8.9	370	<9.1	<12	<9.5	<13	<8.5	<11
>nC28 to nC35					NA	<8.8	61 J	<9.8	NM	<8.7	<9.0	<9.5	<9.2	910	120	<9.4	<9.4	<9.3	<8.1	<8.7	<9.3	<10	<8.9	500	51	<12	<9.5	<13	<8.5	<11
Total Petroleum Hydrocarbon	5,797	NC	58000	NC	NA	<6.7	75	<7.5	NM	<6.6	<6.9	<7.2	<7.0	1810	134	<7.1	<7.1	<7.1	<6.1	<6.6	<7.1	<7.7	<6.8	870	51	<8.9	<7.2	<9.6	<6.5	<8.6

Notes:

(1) Concentrations were compared to the lower of the TotSoilcomb and GWSoilIng TCEQ TRRP Tier 1 or Tier 2 Residential Soil PCLs (30 acre source area) (March 2022). Tier 2 calculations were presented in the Affected

Property Assessment Report (APAR) dated October 15, 2010 (PBW, 2010).

(2) Metal concentrations were compared to the higher of the TRRP Tier 1 PCL and the Texas-Specific

Background Concentrations (TSBC).

(3) Lead concentrations were compared to TRRP Tier 2 PCLs based on the formula and default values presented in TCEQ Guidance Document Establishing Critical Protective Concentration Levels (PCLs) for Lead-Affected

Soils (TCEQ, August 2001).

(4) Constituent detections above the sample detection limit (SDL) have been bolded.

(5) Concentrations exceeding the RAL are highlighted yellow. The applicable action level is highlighted gray.

(6) J = Analyte detected below the quantitation limit.

(7) TPH PCL based on TPH mixture PCL for an unresolved complex mixture (UCM) as detailed in the Interim NAPL and TPH-NAPL Assessment Report (Golder, 2020).

(8) Arsenic SPLP results compared to TRRP Tier 1 ^{GW}GW_{ING} PCL (0.01 mg/L)

NC- Not Calculated - According to the TCEQ TRRP Tier 1 TPH PCL Calculator for TCEQ Method 1006 Data, the

GW-Soil-Ing PCL not needed based on the Hazard Index (Golder, 2020).

NM- Not Measured

Table 1 **Baseline Soil Assessment** Union Pacific Railroad - Englewood Intermodal Yard; Schneider Lease Property Houston, TX

				ier 1 or 2		1				1				1	1		1		1					
	TRRP Tie	er 1 or 2		al/Industrial		BLS-23	BLS-24	BLS-24	BLS-25	BLS-25	BLS-26	BLS-26	BLS-27	BLS-27	BLS-28	BLS-28	BLS-29	BLS-29	BLS-30	BLS-30	BLS-30	BLS-31	BLS-31	BLS-31
Location ID	Residenti			CLs	Texas Specific		DE0 24	020 24	D10 10		DE0 20	DEC 10					D10 10	02020	DE0 00	BE0 00	BE0 00	BLOOT	BLOOT	DLO OI
Sample Interval					Background	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	0-2.5	7.5-10	12.5-15	0-2.5	7.5-10	12.5-15
Sample Date	TotSoil _{Comb}	^{GW} Soil _{Ing}	Tot Soil Comb	^{GW} Soil _{Ing}	Concentration	8/24/2022	10/11/2022	10/11/2022	10/11/2022	10/11/2022	10/11/2022	10/11/2022	10/11/2022		10/11/2022	10/11/2022	10/11/2022	10/11/2022	12/15/2022	12/15/2022	12/15/2022	12/15/2022	12/15/2022	12/15/2022
Constituent	mg/kg	ma/ka	mg/kg	mg/kg	ma/ka	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals					<u>5</u> _5	1 3 3	5 5	5 5		5 5	5 5	5 5			55		5 5	5 5		5 5	5 5	5.5		
Arsenic	24	2.5	200	2.5	5.9	1.82	2.65	2.42	3.13	2.43	1.92	8.15	4.57	1.38	NM	NM	NM	NM	0.647	1.01	7.38	1.94	5.82	3.45
Arsenic SPLP (mg/L)*	NA	NA	NA	NA	NA	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	0.00415 J	NM	NM	NM
Lead	500	275	1600	275	15	7.58	NM	NM	NM	NM	NM	NM	NM	NM	170	6.09	270	7.31	NM	NM	NM	NM	NM	NM
Volatile Organic Compounds				-	_	_		-	-	-						-								
1,2 Dichloroethane	30	0.031	71	0.031	NA	< 0.00059	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Benzene	69	0.1	130	0.1	NA	< 0.00049	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Chlorobenzene	320	6.5	540	6.5	NA	< 0.00059	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Ethylbenzene	5300	44	17000	44	NA	< 0.00069	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Methylene chloride	1500	0.022	8600	0.021	NA	< 0.00098	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	5400	43	29000	43	NA	< 0.00059	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Xylenes, Total	3700	730	6500	730	NA	< 0.00098	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Semi-Volatile Organic Compo 1,2-Diphenylhydrazine	unas 5.4	0.23	20	0.51	NA	<0.0013	NM	NM	NM	NM	NM		NIM	NM		NM	NM	NM	NM	NM	NM	NIN/	NM	NIM
2,4-Dimethylphenol	5.4 1300	18	14000	53	NA NA	<0.0013	NM	NM	NM	NM	NM	NM NM	NM NM	NM	NM NM	NM	NM	NM	NM	NM	NM	NM NM	NM	NM NM
2,4-Dinitrotoluene	6.9	0.022	28	0.049	NA	<0.0039	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
2,6-Dinitrotoluene	6.9	0.022	28	0.049	NA	< 0.0039	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
2-Chloronaphthalene	5000	5000	50000	15000	NA	<0.0039	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
2-Methylnaphthalene	250	130	2500	380	NA	< 0.00059	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
4,6-Dinitro-2-methylphenol	6.7	0.0021	68	0.54	NA	< 0.0025	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
4-Nitrophenol	130	0.089	1400	0.27	NA	< 0.0023	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Acenaphthene	3000	1800	37000	5200	NA	< 0.00059	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Acenaphthylene	3800	3000	37000	9100	NA	< 0.0012	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Anthracene	18000	3400	190000	10000	NA	< 0.00059	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Benz(a)anthracene	41	130	170	300	NA	<0.0019	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Benzo(a)pyrene	4.1	57	17	57	NA	<0.0012	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Bis(2-chloroethoxy)methane	2.5	0.077	6.2	0.17	NA	<0.0011	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Bis(2-ethylhexyl)phthalate	43	1200	560	1200	NA	0.0032 J	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Chrysene	4100	12000	17000	26000	NA	<0.00095	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Dibenzofuran	270	250	2700	740	NA	<0.00083	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Di-n-butyl phthalate	6200	25000	68000	74000	NA	0.0028 J	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Fluoranthene	2300	14000	25000	43000	NA	<0.0013	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Fluorene	2300	2200	25000	6600	NA	<0.0013	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Naphthalene	120	230 0.49	190 57	680 1.5	NA	<0.00071	NM NM	NM NM	NM NM	NM	NM NM	NM	NM	NM	NM	NM NM	NM NM	NM	NM	NM	NM	NM NM	NM	NM NM
Nitrobenzene N-Nitrosodiphenylamine	34 570	19	1900	42	NA NA	<0.0011 <0.00083	NM	NM	NM	NM NM	NM	NM NM	NM NM	NM NM	NM NM	NM	NM	NM NM	NM NM	NM NM	NM NM	NM	NM NM	NM
Pentachlorophenol	0.73	0.12	32	0.12	NA	<0.00083	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Phenanthrene	1700	3100	19000	9300	NA	<0.0039	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Phenol	950	45	1400	130	NA	< 0.0013	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Pyrene	1700	8400	19000	25000	NA	<0.00071	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Total Petroleum Hydrocarbon		0100				0.00071																		
nC6 to nC12					NA	<7.0	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
>nC12 to nC28					NA	<9.2	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
>nC28 to nC35					NA	<9.2	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Total Petroleum Hydrocarbon	5,797	NC	58000	NC	NA	<7.0	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM

Notes:

(1) Concentrations were compared to the lower of the TotSoilcomb and GWSoilIng TCEQ TRRP Tier 1 or Tier 2 Residential Soil PCLs (30 acre source area) (March 2022). Tier 2 calculations were presented in the Affected Property Assessment Report (APAR) dated October 15, 2010 (PBW, 2010).

(2) Metal concentrations were compared to the higher of the TRRP Tier 1 PCL and the Texas-Specific

Background Concentrations (TSBC).

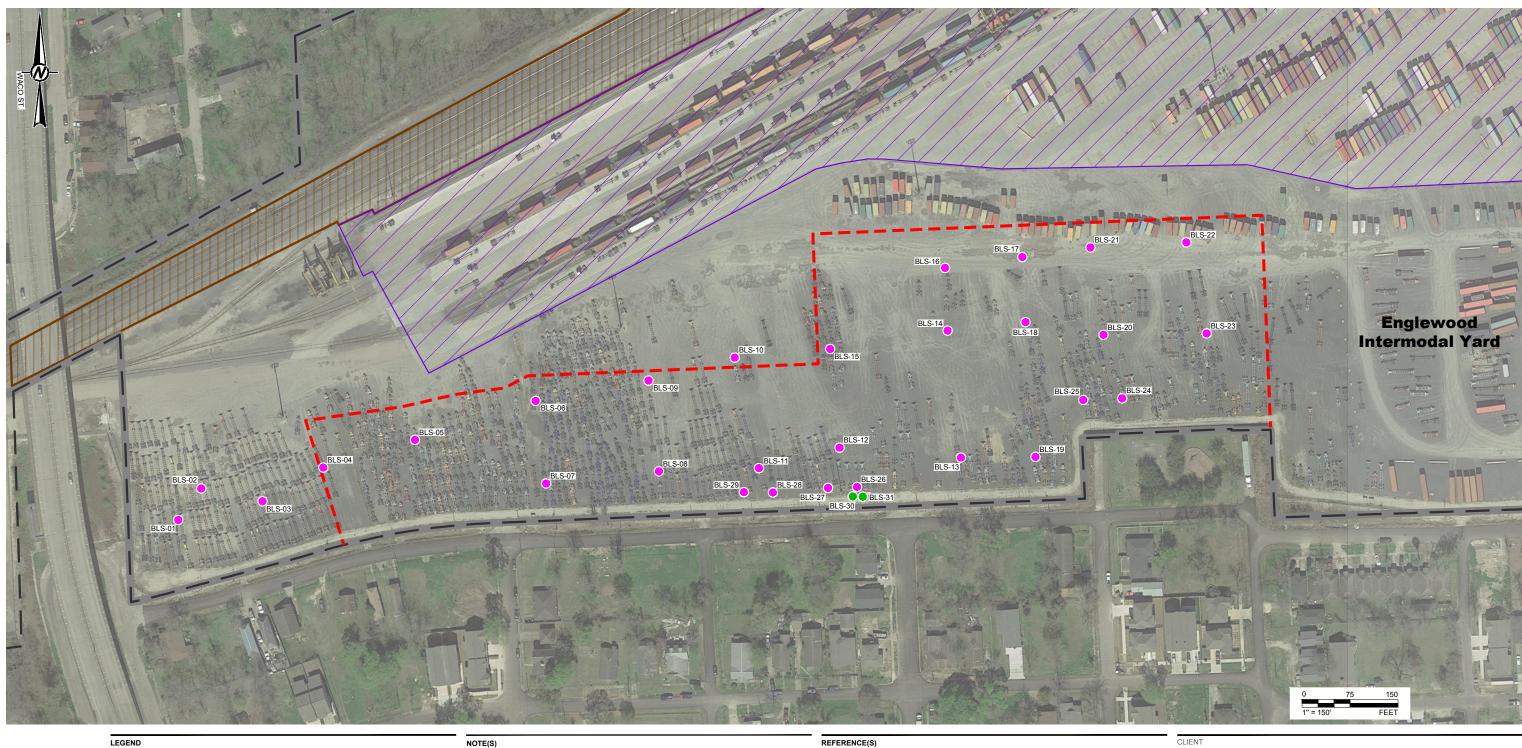
(3) Lead concentrations were compared to TRRP Tier 2 PCLs based on the formula and default values presented in TCEQ Guidance Document Establishing Critical Protective Concentration Levels (PCLs) for Lead-Affected Soils (TCEQ, August 2001).

(4) Constituent detections above the sample detection limit (SDL) have been bolded.

(5) Concentrations exceeding the RAL are highlighted yellow. The applicable action level is highlighted gray.

(6) J = Analyte detected below the quantitation limit.

(7) TPH PCL based on TPH mixture PCL for an unresolved complex mixture (UCM) as detailed in the Interim NAPL and TPH-NAPL Assessment Report (Golder, 2020).


(8) Arsenic SPLP results compared to TRRP Tier 1 GW GW $_{ING}$ PCL (0.01 mg/L)

NC- Not Calculated - According to the TCEQ TRRP Tier 1 TPH PCL Calculator for TCEQ Method 1006 Data, the GW-Soil-Ing PCL not needed based on the Hazard Index (Golder, 2020).

NM- Not Measured

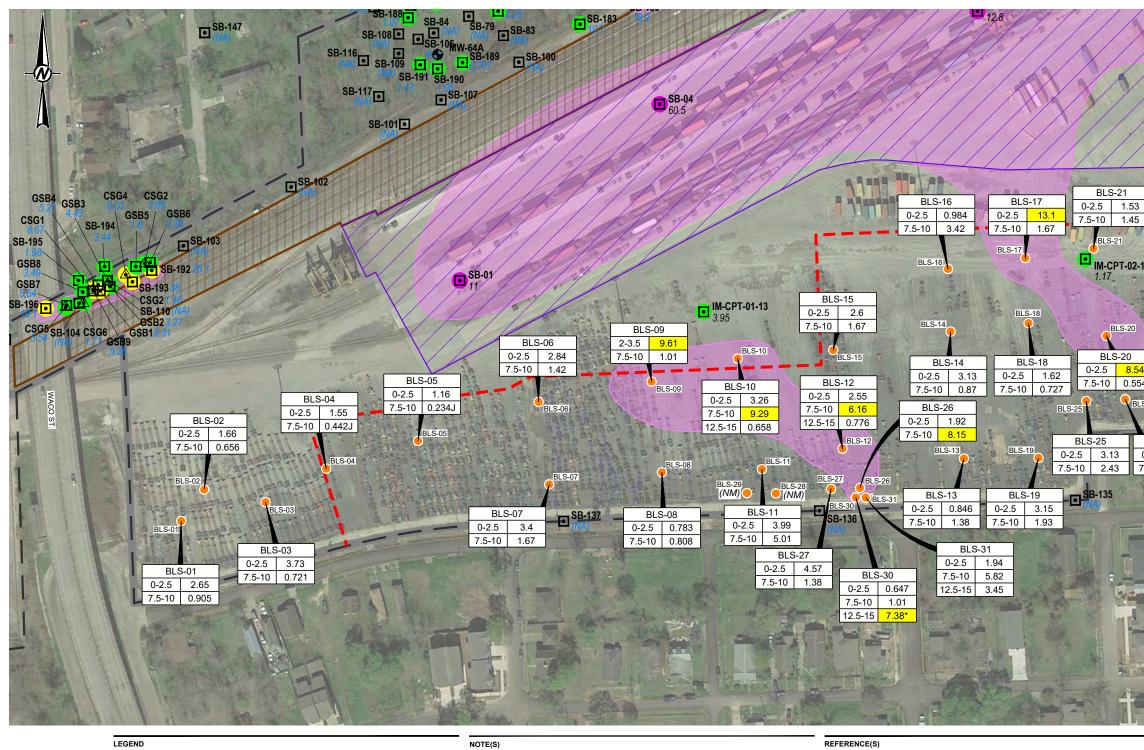
Table 1 **Baseline Soil Assessment** Union Pacific Railroad - Englewood Intermodal Yard; Schneider Lease Property Houston, TX

FIGURES

UPRR PROPERTY BOUNDARY

NOTE(S) 1. PROPOSED FENCE TO BE TIED INTO EXISTING PERIMETER FENCE.

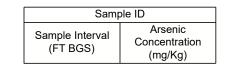
REFERENCE(S) AERIAL: GOOGLE EARTH, IMAGERY DATED 2/23/19.


- RAILROAD BALLAST CAP AREA ASPHALT CAP AREA SOIL CAP
 - CONCRETE CAP AREA
 - APPROXIMATE PROPOSED FENCE BOUNDARY
 - BASELINE SOIL SAMPLING LOCATION (AUGUST AND OCTOBER 2022)
 - BASELINE SOIL SAMPLING LOCATION (DECEMBER 2022)

CONSULTANT	YYYY-MM-DD	2023-01-06
	DESIGNED	AJD
	PREPARED	AJD
	REVIEWED	MH
	APPROVED	ECM
PROJECT NO.	REV.	FIGURE
31404514.014	0	1

TITLE SOIL BORING LOCATION MAP

PROJECT HOUSTON WOOD PRESERVING WORKS


CLIENT UNION PACIFIC RAILROAD CO.

UPRR PROPERTY BOUNDARY RAILROAD BALLAST CAP AREA CONCRETE CAP AREA APPROXIMATE PROPOSED FENCE BOUNDARY BASELINE SOIL SAMPLING LOCATION AFFECTED PROPERTY/PCLE ZONE SOIL BORING LOCATION ⊡ (PRESENTED IN 2017 RACR) CONFIRMATION SAMPLE LOCATION ◬ (PRESENTED IN 2017 RACR) DETECTED SURFACE SOIL CONCENTRATION <RAL (PRESENTED IN 2017 RACR) DETECTED SURFACE SOIL CONCENTRATION >RAL (PRESENTED IN 2017 RACR) DETECTED SURFACE SOIL CONCENTRATION >cPCL (PRESENTED IN 2017 RACR) • A-TZ MONITORING WELL LOCATION

PROPOSED FENCE TO BE TIED INTO EXISTING PERIMETER FENCE.

NOTE(S)

- RESIDENTIAL ASSESSMENT LEVEL (RAL) = 5.9 mg/Kg. CRITICAL PCL (cPCL) = 5.9 mg/Kg (ON-SITE), 5.9 mg/Kg (OFF-SITE). RAL AND cPCL BASED ON TIER 1 AND 2 RES/CI PCLs, 30 ACRE SOURCE AREA.
- * ARSENIC SPLP RESULT AT BLS-30 (12.5-15) WAS 0.00418J mg/L (BELOW ^{GW}GW_{Ing} PCL (0.01 mg/L); THEREFORE, THE ARSENIC CONCENTRATION IS PROTECTIVE OF THE SHALLOW GROUNDWATER AND SATISFIES THE DELINEATION REQUIREMENT TO THE APPROPRIATE ASSESSMENT LEVEL.

1. AERIAL: GOOGLE EARTH, IMAGERY DATED 2/23/19.

- 2. 2017 RESPONSE ACTION COMPLETION REPORT (RACR), UNION PACIFIC RAILROAD,
- HOUSTON, TEXAS WOOD PRESERVING WORKS.

$\langle \rangle$				
	• MW-97A			
	BLS-22 D-2.5 1.8 .5-10 5.5 BLS-22	in m	• M-CPT-03-13 1.38	
-13 	BLS-23 0-2.5 1.72 7.5-10 1.82	MW-51A SB-134	Englewo Intermodal	od Yard
BLS 0-2.5 7.5-10	S-24 2.65 2.42			-133
		0	75 150 FEET	

CLIENT UNION PACIFIC RAILROAD CO.

PROJECT HOUSTON WOOD PRESERVING WORKS

TITLE SURFACE SOIL ARSENIC CONCENTRATION MAP

CONSULTANT	YYYY-MM-DD	2022-01-09	
	DESIGNED	AJD	
	PREPARED	AJD	
	REVIEWED	МН	
	APPROVED	ECM	
PROJECT NO.	RE	EV.	FIGURE
31404514.014	0		2

ATTACHMENT A

Data Usability Summary and Laboratory Report

27 January 2023

То	Eric Matzner		
Copy to	Jesse Orth, Julie Lidstone		
From	Chris G. Knight/eew/1460	Tel	512-506-8803
Subject	Data Usability Summary Baseline Soil Assessment Union Pacific Railroad (UPRR)/Houston TX Wood Preserving Works Houston, Texas December 2022	Project no.	11183954-1620

1. Scope of Data Usability Study

This document details a Data Usability Summary (DUS) of analytical results for samples collected in support of the Baseline Soil Assessment at the UPRR/Houston TX-Wood Preserving Works site during December 2022. Samples were submitted to ALS Global, located in Houston, Texas and are reported in data package HS22120899. The intended use of the data is to support the Baseline Soil Assessment at the site by providing current concentration of chemicals of concern.

Data were reviewed and validated by Chris G. Knight of GHD Services Inc. (GHD), in accordance with Title 30 of the Texas Administrative Code Section 350.54 (30 TAC 350.54) as described in the Texas Commission on Environmental Quality (TCEQ) Regulatory Guidance document entitled "Review and Reporting of COC Concentration Data under TRRP", (RG-366/TRRP-13), revised May 2010, herein referred to as "TRRP-13 Guidance". Evaluation of the data was based on information obtained from the chain of custody form, the finished report forms, method blank data, recovery data from surrogate spikes/laboratory control samples (LCS)/matrix spikes (MS)/duplicate analyses, the laboratory review checklists (LRC), and the laboratory exceptions (ER).

A sample collection and analysis summary is presented in Table 1. This summary provides a cross-reference of field sample identification numbers and location identification. Each sample is assigned a unique field identification number.

The validated sample results are presented in Table 2A. While a synthetic precipitation leaching procedure (SPLP) result is presented in Table 2B, it is included only for informational purposes. No data review or verification was performed on the SPLP analysis. A summary of the analytical methodology is presented in Table 3.

2. Laboratory Qualifications

The Laboratory's quality assurance program is consistent with the quality standards outlined in the National Environmental Laboratory Accreditation Program (NELAP). This laboratory was accredited under Texas

Certification number #T104704231 at the time the analysis was performed and the certificate is included in Attachment A.

3. Project Objectives

3.1 Sampling/Analytical QA/QC Objectives

The QA/QC program was designed to identify contamination resulting from the sampling, sample transport and analytical process through the analysis of method blanks. The QA/QC program was designed to evaluate the quality of the resulting data with respect to bias and precision through analysis of LCS, MS, and duplicate analyses.

4. Data Review/Validation Results

4.1 Sample Hold Time and Preservation

Samples were shipped with chains of custody and the paperwork was filled out properly. All samples were delivered on ice and stored by the laboratory at the required temperature (0-6°C).

Sample chain of custody documents and the analytical report were used to determine sample holding times. All samples were prepared and analyzed within the required holding times.

4.2 Sample Containers

Sample containers used were certified pre-cleaned glass containers provided by the laboratory. These containers meet or exceed analyte specifications established in the United States Environmental Protection Agency (USEPA) *Specifications and Guidance for Contaminant-free Sample Containers*.

4.3 Calibrations

According to the LRC, initial calibration and continuing calibration data met the criteria for the selected method.

4.4 Laboratory Method Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures. As these were not discrete samples handled in the field, these blanks are not listed on the sample identification cross-reference list found in the data package.

For this study, laboratory method blanks were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch and results are reported in the laboratory data package.

All method blank results were non-detect or below the method quantitation limit (MQL), indicating that laboratory contamination was not a factor for this investigation.

4.5 Laboratory Control Sample Analyses

LCS are prepared and analyzed as samples to assess the analytical efficiencies of the method employed, independent of sample matrix effects. The recovery ranges established by the laboratory are adopted as the acceptance criteria for the project.

For this study, LCS were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

The LCS contained all analytes of concern. All LCS recoveries were within the laboratory control limits, demonstrating acceptable analytical accuracy.

4.6 Matrix Spike Analyses

To evaluate the effects of sample matrices on the preparation process, measurement procedures, and accuracy of a particular analysis, samples are spiked with a known concentration of the analytes of concern and analyzed as MS/matrix spike duplicate (MSD) samples. The RPD between the MS and MSD is used to assess analytical precision.

The laboratory performed MS/MSD analyses on non-site samples. These cannot be used to assess accuracy and precision for the site samples.

4.7 Duplicate Sample Analyses

Analytical precision is evaluated based on the analysis of laboratory duplicate samples. For this study, duplicate samples were prepared and analyzed by the laboratory for metals analysis. The relative percent differences (RPD) established by the laboratory are adopted as the acceptance criteria for the project.

The laboratory performed duplicate analyses on non-site samples. These cannot be used to assess precision for the site samples.

4.8 Field Procedures

Golder Associates, Inc. collected soil samples in accordance with their Standard Operating Procedures (SOP) for sample collection.

5. Analyte Reporting

The laboratory reported detected results for each analyte down to the sample detection limit (SDL), which is defined as the MDL with sample-specific adjustments for dilutions, aliquot size, volumes, etc.

All detectability check standard (DCS) results supported the laboratory method detection limits (MDL).

All soil results were reported on a dry weight basis.

6. Conclusion

Based on the assessment detailed in the foregoing, the analytical data summarized in Table 2A are usable for the purpose of supporting the Baseline Soil Assessment by providing current concentrations of the chemicals of concern in samples at the site without qualification.

Regards

Chris G. Knight Data Management Team – Data Validator

Table 1

Sample Collection and Analysis Summary Baseline Soil Sampling Union Pacific Railroad (UPRR)/Houston, TX-Wood Preserving Works Houston, Texas December 2022

						_	Analysis	s/Parameters
Sample Identification	Location	Matrix	Initial Sample Depth	Final Sample Depth	Collection Date	Collection Time	Arsenic	SPLP Arsenic
			(ft bgs)	(ft bgs)	(mm/dd/yyyy)	(hr:min)		
SO-1620-BLS-30(0-2.5)-20221215	BLS-30	Soil	0	2.5	12/15/2022	09:50	х	
SO-1620-BLS-30(12.5-15)-20221	BLS-30	Soil	12.5	15	12/15/2022	10:02	Х	Х
SO-1620-BLS-31(0-2.5)-20221215	BLS-31	Soil	0	2.5	12/15/2022	10:15	Х	
SO-1620-BLS-31(7.5-10)-202212	BLS-31	Soil	7.5	10	12/15/2022	10:21	Х	
SO-1620-BLS-31(12.5-15)-20221	BLS-31	Soil	12.5	15	12/15/2022	10:27	Х	
SO-1620-BLS-30(7.5-10)-202212	BLS-30	Soil	7.5	10	12/15/2022	10:31	Х	

Notes:

ft bgs - Feet Below Ground Surface

SPLP - Synthetic Precipitation Leaching Procedure

Table 2A

Analytical Results Summary Baseline Soil Assessment Union Pacific Railroad (UPRR)/Houston TX-Wood Preserving Works Houston, Texas December 2022

Sample Name:		SO-1620-BLS-30(7.5-10)-202212	SO-1620-BLS-30(12.5-15)-20221	SO-1620-BLS-30(0-2.5)-20221215
Sample Date:		12/15/2022	12/15/2022	12/15/2022
Depth:		7.5-10 ft bgs	12.5-15 ft bgs	0-2.5 ft bgs
Parameters	Unit			
Metals			7.00	0.017
Arsenic	mg/kg	1.01	7.38	0.647

Table 2A

Analytical Results Summary Baseline Soil Assessment Union Pacific Railroad (UPRR)/Houston TX-Wood Preserving Works Houston, Texas December 2022

Sample Name:		SO-1620-BLS-31(7.5-10)-202212	SO-1620-BLS-31(12.5-15)-20221	SO-1620-BLS-31(0-2.5)-20221215
Sample Date:		12/15/2022	12/15/2022	12/15/2022
Depth:		7.5-10 ft bgs	12.5-15 ft bgs	0-2.5 ft bgs
Parameters	Unit			
Metals Arsenic	mg/kg	5.82	3.45	1.94

Notes:

ft bgs - Feet below ground si

Table 2B

SPLP Analytical Results Summary Baseline Soil Assessment Union Pacific Railroad (UPRR)/Houston TX-Wood Preserving Works Houston, Texas December 2022

Location ID: Sample Name: Sample Date: Depth: BLS-30 SO-1620-BLS-30(12.5-15)-20221 12/15/2022 12.5-15 ft bgs

Parameters	Unit	
Metals, SPLP		
Arsenic	mg/L	0.00415 J

Notes:

ft bgs - Feet below ground surface

SPLP - Synthetic Precipitation Leaching Procedure

J - Estimated concentration

Table 3

Analytical Methods Baseline Soil Sampling Union Pacific Railroad (UPRR)/Houston, TX-Wood Preserving Works Houston, Texas December 2022

			Holding Time					
Parameter	Method	Matrix	Collection to Extraction (Days)	Collection or Extraction to Analysis (Days)				
Arsenic	SW-846 6020A	Soil	-	180				
SPLP Arsenic	SW-846 13126020A	Soil	180	180				

Notes:

SPLP - Synthetic Precipitation Leaching Procedure

"-" - Not Applicable

Method References:

SW-846 - "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition, 1986, with subsequent revisions

Attachment A

Laboratory NELAP Certificate(s)

Texas Commission on Environmental Quality

NELAP-Recognized Laboratory Accreditation is hereby awarded to

ALS Laboratory Group, Environmental Services Division (Houston, Texas) 10450 Stancliff Road, Suite 115 Houston, TX 77099-4338

in accordance with Texas Water Code Chapter 5, Subchapter R, Title 30 Texas Administrative Code Chapter 25, and the National Environmental Laboratory Accreditation Program.

The laboratory's scope of accreditation includes the fields of accreditation that accompany this certificate. Continued accreditation depends upon successful ongoing participation in the program. The Texas Commission on Environmental Quality urges customers to verify the laboratory's current location(s) and accreditation status for particular methods and analyses (www.tceq.texas.gov/goto/lab). Accreditation does not imply that a product, process, system or person is approved by the Texas Commission on Environmental Quality.

Certificate Number: T104704231-22-29 Effective Date: 5/1/2022 Expiration Date: 4/30/2023

Executive Director Texas Commission on Environmental Quality

10450 Stancliff Rd. Suite 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887

December 30, 2022

Eric Matzner WSP Golder 1601 S. MoPac Expressway Suite 325D Austin, TX 78746

Work Order: HS22120899

Laboratory Results for: Houston TX-Wood Preserving Works

Dear Eric Matzner,

ALS Environmental received 6 sample(s) on Dec 15, 2022 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Nb (r

Generated By: JUMOKE.LAWAL Dane J. Wacasey

Client:WSP GolderProject:Houston TX-Wood Preserving WorksTRRP Laboratory Data
Package Cover PageWorkOrder:HS22120899

This data package consists of all or some of the following as applicable:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,b) Calculated %R for each analyte, andc)The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits.
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.

R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.

R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Client:	WSP Golder					
Project:	Houston TX-Wood Preserving Works	TRRP Laboratory Data Package Cover Page				
WorkOrder:	HS22120899	i ackage oover i age				
Palages Statements I am regroupsible for the release of this laboratory data package. This laboratory is						

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory have been identified by the laboratory in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: [NA] This laboratory meets an exception under 30 TAC §25.6 and was last inspected by [] TCEQ or [] ______ on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Dane J. Wacasey

		Laboratory Review Checkli	st: Reportable Data	a				
Labo	oratory	Name: ALS Laboratory Group	LRC Date: 12/20/	2022				
Proje	ect Na	me: Houston TX-Wood Preserving Works	Laboratory Job N	umbe	r: HS2	2120899)	
Revi	ewer I	Dane Wacasey	Prep Batch Numb	er(s):	18746	53,R424	271	
#1	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
R1	OI	Chain-of-custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of satupon receipt?	mple acceptability	х				
		Were all departures from standard conditions described in an	n exception report?	X				
R2	OI	Sample and quality control (QC) identification		Λ				
		Are all field sample ID numbers cross-referenced to the labo	oratory ID numbers?	Х				
		Are all laboratory ID numbers cross-referenced to the corres	ponding QC data?	Х				
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding time		Х			-	_
		Other than those results < MQL, were all other raw values b calibration standards?	racketed by	х				
		Were calculations checked by a peer or supervisor?		X				
		Were all analyte identifications checked by a peer or supervise	isor?	X				
		Were sample detection limits reported for all analytes not de		Х				
		Were all results for soil and sediment samples reported on a		Х				
		Were % moisture (or solids) reported for all soil and sedime		Х				
		Were bulk soils/solids samples for volatile analysis extracted	d with methanol per			v		
		SW-846 Method 5035? If required for the project, TICs reported?				X X		
R4	0	Surrogate recovery data						
	Ť	Were surrogates added prior to extraction?				X		
	Í	Were surrogate percent recoveries in all samples within the	laboratory QC					
D.5	01	limits?				X		
R5	OI	Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed?		Х				
		Were blanks analyzed at the appropriate frequency?		X				
		Were method blanks taken through the entire analytical proc	ess, including					
	preparation and, if applicable, cleanup procedures?							
		Were blank concentrations < MQL?		Х				
R6	OI	Laboratory control samples (LCS):		V				
		Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure	including prop and	Х				
		cleanup steps?	, menuang prep and	Х				
		Were LCSs analyzed at the required frequency?		X				
		Were LCS (and LCSD, if applicable) %Rs within the labora		Х				
		Does the detectability data document the laboratory's capab	ility to detect the					
		COCs at the MDL used to calculate the SDLs?		X X				
R 7	OI	Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) da	ta	Λ				
K /	01	Were the project/method specified analytes included in the N		Х				
		Were MS/MSD analyzed at the appropriate frequency?		X				
		Were MS (and MSD, if applicable) %Rs within the laborato	ry QC limits?	Х				
		Were MS/MSD RPDs within laboratory QC limits?		Х				
R 8	OI	Analytical duplicate data	4	v				
		Were appropriate analytical duplicates analyzed for each ma		X		_		
		Were analytical duplicates analyzed at the appropriate frequ Were RPDs or relative standard deviations within the labora		X X		_		
R9	OI	Method quantitation limits (MQLs):						
		Are the MQLs for each method analyte included in the labor	ratory data package?	Х				
		Do the MQLs correspond to the concentration of the lowest						
	<u> </u>	standard?	1	X	<u> </u>	_		
D10		Are unadjusted MQLs and DCSs included in the laboratory	data package?	Х				
R10	OI	Other problems/anomalies Are all known problems/anomalies/special conditions noted	in this I RC and					
		ER?	in uns LICC allu	Х				
		Were all necessary corrective actions performed for the repo		X				
		Was applicable and available technology used to lower the S						
		the matrix interference effects on the sample results?		Х		_		
		Is the laboratory NELAC-accredited under the Texas Laboratory		v				
		the analytes, matrices and methods associated with this labo	ratory data package?	X			-	
	L				L			

x -		Laboratory Review Che						
Laboratory Name: ALS Laboratory Group LRC Date: 12/20/2022								
U		t Name: Houston TX-Wood Preserving Works Laboratory Job Number: HS22120899						
Reviewer Name: Dane Wacasey Prep Batch Number(s): 187463,R424271								
#1	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
S1	OI	Initial calibration (ICAL)						
		Were response factors and/or relative response factors for o limits?	each analyte within QC	Х				
		Were percent RSDs or correlation coefficient criteria met)	X				
		Was the number of standards recommended in the method		X				
		Were all points generated between the lowest and highest s						
		calculate the curve?		Х				
		Are ICAL data available for all instruments used?		Х				_
		Has the initial calibration curve been verified using an app standard?	ropriate second source	x				
		Initial and continuing calibration verification (ICCV and	nd CCV) and	Λ				
S2	OI	continuing calibration blank (CCB)						
		Was the CCV analyzed at the method-required frequency?		Х				
		Were percent differences for each analyte within the method	od-required QC limits?	Х				
		Was the ICAL curve verified for each analyte?		Х				
		Was the absolute value of the analyte concentration in the	inorganic CCB < MDL?	X				
S 3	0	Mass spectral tuning:		24				
	-	Was the appropriate compound for the method used for tur	ning?	Х				
		Were ion abundance data within the method-required QC l		Х				
S4	0	Internal standards (IS):						
		Were IS area counts and retention times within the method		Х				
ar	01	Raw data (NELAC section 1 appendix A glossary, and sec	ction 5.12 or ISO/IEC					
S 5	OI	17025 section	data) raviawad by an					
		Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?						
		Were data associated with manual integrations flagged on	the raw data?	X X				
S6	0	Dual column confirmation						
		Did dual column confirmation results meet the method-req			Х			
S7	0	Tentatively identified compounds (TICs):						
		If TICs were requested, were the mass spectra and TIC dat	a subject to appropriate					
S8	Ι	checks? Interference Check Sample (ICS) results:				X		
30	1	Were percent recoveries within method QC limits?		X				
S 9	Ι	Serial dilutions, post digestion spikes, and method of sta	andard additions					
		Were percent differences, recoveries, and the linearity wit						
		specified in the method?		Х				
S10	OI	Method detection limit (MDL) studies						
	ļ	Was a MDL study performed for each reported analyte?	D.02. 0	X				
C11	01	Is the MDL either adjusted or supported by the analysis of	DCSs?	Х				
S11	OI	Proficiency test reports: Was the laboratory's performance acceptable on the applic.	able proficiency tests or					
		evaluation studies?	able proficiency tests of	Х				
S12	OI	Standards documentation						
	1	Are all standards used in the analyses NIST-traceable or of	otained from other					
		appropriate sources?		Х				
S13	OI	Compound/analyte identification procedures	. 12					
614	01	Are the procedures for compound/analyte identification do	cumented?	Х				
S14	OI	Demonstration of analyst competency (DOC) Was DOC conducted consistent with NELAC Chapter 5C	or ISO/IEC 49	v				
		Is documentation of the analyst's competency up-to-date a		X X				
		Verification/validation documentation for methods (NE						
S15	OI	ISO/IEC 17025 Section 5)	o c					
	1	Are all the methods used to generate the data documented,	verified, and validated,					
		where applicable?	,	Х				
S16	OI	Laboratory standard operating procedures (SOPs):						
14		Are laboratory SOPs current and on file for each method p		X		<u> </u>		
		ed by the letter "R" must be included in the laboratory d						Items
		the letter "S" should be retained and made available up Analyses; I = Inorganic Analyses (and general chemist						viewed:
		ion Report identification number (an Exception Report s						
· · · · ·	_///			an 110		01 110		

Laboratory Review Checklist: Exception Reports							
Labor	ratory Name: ALS Laboratory Group	LRC Date: 12/20/2022					
Proje	ct Name: Houston TX-Wood Preserving Works	Laboratory Job Number: HS22120899					
Revie	ewer Name: Dane Wacasey	Prep Batch Number(s): 187463,R424271					
ER# ⁵	Description						
	No Exceptions						
Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period. O = Organic Analyses; I = Inorganic Analyses (and general chemistry, when applicable); NA = Not Applicable; NR = Not Reviewed; R# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).							

Lab Samp ID

HS22120899-01

HS22120899-02

HS22120899-03

HS22120899-04

HS22120899-05

HS22120899-06

Date: 30-E	Dec-22
------------	--------

Client:	WSP Golder
Project:	Houston TX-Wood Preserving Works
Work Order:	HS22120899

SAMPLE SUMMARY

Client Sample ID	Matrix	TagNo	Collection Date	Date Received	Hold
SO-1620-BLS-30(0-2.5)-20221215	Soil		15-Dec-2022 09:50	15-Dec-2022 14:15	
SO-1620-BLS-30(12.5-15)-20221215	Soil		15-Dec-2022 10:02	15-Dec-2022 14:15	
SO-1620-BLS-31(0-2.5)-20221215	Soil		15-Dec-2022 10:15	15-Dec-2022 14:15	
SO-1620-BLS-31(7.5-10)-20221215	Soil		15-Dec-2022 10:21	15-Dec-2022 14:15	
SO-1620-BLS-31(12.5-15)-20221215	Soil		15-Dec-2022 10:27	15-Dec-2022 14:15	
SO-1620-BLS-30(7.5-10)-20221215	Soil		15-Dec-2022 10:31	15-Dec-2022 14:15	

Client:	WSP Golder		ANALYTICAL REPORT			
Project:	Houston TX-Wood Preserving Works	WorkOrder:HS22120899				
Sample ID:	SO-1620-BLS-30(0-2.5)-20221215	Lab ID:HS22120899-01				
Collection Date:	15-Dec-2022 09:50		Matrix:Soil			
ANALYSES	RESULT QUAL SDL	MQL	DILUTION UNITS FACTOR	DATE ANALYZED		
METALS BY SW6020A	Method:SW6020A		Analyst JHD			

METALS BY SW6020A	Metho	od:SW6020A		Prep:SW3050B	/ 19-Dec-2022	2 Analyst: JHD
Arsenic	0.647	0.0817	0.583	mg/Kg-dr	y 1	19-Dec-2022 20:00
MOISTURE - ASTM D2216	Method	:ASTM D2216				Analyst: FO
Percent Moisture	17.1	0.0100	0.0100	wt%	1	16-Dec-2022 11:37

Client:	WSP Golder					ANALYTI	CAL REPORT
Project:	Houston TX-Wood Preserving Works				WorkOr	der:HS22	120899
Sample ID:	SO-1620-BLS	-30(12.	5-15)-202212	215	Lab	DID:HS22	120899-02
Collection Date:	15-Dec-2022 2	10:02		Matrix:Soil			
ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
SPLP METALS BY SW6020A		Method	:SW6020A	Leache:SW1312 / 23-Dec-2022	Prep:SW3010A /	29-Dec-2022	Analyst: JHD
Arsenic	0.00415	J	0.000400	0.00500	mg/L	1	29-Dec-2022 18:23
METALS BY SW6020A		Method	:SW6020A		Prep:SW3050B /	19-Dec-2022	Analyst: JHD
Arsenic	7.38		0.0785	0.561	mg/Kg-dry	1	19-Dec-2022 20:02
MOISTURE - ASTM D2216	r	Method:A	ASTM D2216				Analyst: FO
Percent Moisture	15.4		0.0100	0.0100	wt%	1	16-Dec-2022 11:37

Client:	WSP Golder	ANALYTICAL REPORT			
Project:	Houston TX-Wood Preserving Works	WorkOrder:HS22120899			
Sample ID:	SO-1620-BLS-31(0-2.5)-20221215	Lab ID:HS22120899-03			
Collection Date:	15-Dec-2022 10:15	Matrix:Soil			
ANALYSES	RESULT QUAL SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED

METALS BY SW6020A	Method:	SW6020A		Prep:SW3050B /	19-Dec-2022	Analyst: JHD
Arsenic	1.94	0.0780	0.557	mg/Kg-dry	1	19-Dec-2022 20:04
MOISTURE - ASTM D2216	Method:A	STM D2216				Analyst: FO
Percent Moisture	15.4	0.0100	0.0100	wt%	1	16-Dec-2022 11:37

Note: See Qualifiers Page for a list of qualifiers and their explanation.

Client:	WSP Golder		ANALY	ICAL REPORT	
Project:	Houston TX-Wood Preserving Works	WorkOrder:HS22120899			
Sample ID:	SO-1620-BLS-31(7.5-10)-20221215	Lab ID:HS22120899-04			
Collection Date:	15-Dec-2022 10:21		Matrix:Soil		
ANALYSES	RESULT QUAL SDL	MQL	DILUTIO UNITS FACTOR		

METALS BY SW6020A	Method:SW6020A			Prep:SW3050B /	19-Dec-2022	Analyst: JHD
Arsenic	5.82	0.0767	0.548	mg/Kg-dry	1	19-Dec-2022 20:06
MOISTURE - ASTM D2216	Method:A	STM D2216				Analyst: FO
Percent Moisture	14.5	0.0100	0.0100	wt%	1	16-Dec-2022 11:37

Client:	WSP Golder	ANALYTICAL REPORT			
Project:	Houston TX-Wood Preserving Works	WorkOrder:HS22120899			
Sample ID:	SO-1620-BLS-31(12.5-15)-20221215	Lab ID:HS22120899-05			
Collection Date:	15-Dec-2022 10:27		N	latrix:Soil	
ANALYSES	RESULT QUAL SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
	Mothod:SW6020A		Drop: \$14/20505	2 / 10 Dec 2022	Analyst IUD

METALS BY SW6020A	Method:	SW6020A		Prep:SW3050B	/ 19-Dec-2022	Analyst: JHD
Arsenic	3.45	0.0799	0.571	mg/Kg-dry	1	19-Dec-2022 20:08
MOISTURE - ASTM D2216	Method:A	STM D2216				Analyst: FO
Percent Moisture	16.7	0.0100	0.0100	wt%	1	16-Dec-2022 11:37

Client:	WSP Golder		ANALYT	ICAL REPORT	
Project:	Houston TX-Wood Preserving Works	WorkOrder:HS22120899			
Sample ID:	SO-1620-BLS-30(7.5-10)-20221215		Lab ID:HS22120899-0		
Collection Date:	15-Dec-2022 10:31		Matrix:Soil		
ANALYSES	RESULT QUAL SDL	MQL	DILUTION UNITS FACTOR	DATE ANALYZED	
METALS BY SW6020A	Method:SW6020A		Prep:SW3050B / 19-Dec-2022	2 Analyst JHD	

METALS BY SW6020A	Method:	Method:SW6020A		Prep:SW3050B	19-Dec-2022	Analyst: JHD
Arsenic	1.01	0.0773	0.552	mg/Kg-dry	1	19-Dec-2022 20:10
MOISTURE - ASTM D2216	Method:A	STM D2216				Analyst: FO
Percent Moisture	16.1	0.0100	0.0100	wt%	1	16-Dec-2022 11:37

Weight / Prep Log

Client:WSP GolderProject:Houston TX-Wood Preserving WorksWorkOrder:HS22120899

Batch ID: 187463		Start Dat	e: 19 Dec 202	22 08:30	End Date: 19 Dec 2022 14:30
Method: METALS PREF	P - SOLIDS - SV	V3050B			Prep Code: 3050_I_LOW
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS22120899-01		0.5169 (g)	50 (mL)	96.73	4-oz glass, Neat
HS22120899-02		0.5271 (g)	50 (mL)	94.86	4-oz glass, Neat
HS22120899-03		0.5306 (g)	50 (mL)	94.23	4-oz glass, Neat
HS22120899-04		0.534 (g)	50 (mL)	93.63	4-oz glass, Neat
HS22120899-05		0.5257 (g)	50 (mL)	95.11	4-oz glass, Neat
HS22120899-06		0.5398 (g)	50 (mL)	92.63	4-oz glass, Neat
Batch ID: 187749		Start Dat	e: 22 Dec 202	22 15:00	End Date: 23 Dec 2022 08:00
Method: SPLP METALS	EXTRACTION	BY SW1312			Prep Code: 1312LM
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS22120899-02		25 (g)	500 (mL)	20	4-oz glass, Neat
Batch ID: 187944		Start Dat	e: 29 Dec 202	22 08:00	End Date: 29 Dec 2022 20:00
Method: SPLP LEACHA	TE DIGESTION	N BY SW3010)A		Prep Code: 3010A_SPLP
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS22120899-02		10 (mL)	10 (mL)	1	4-oz glass, Neat

Client: Project: WorkOrder:	WSP Golder Houston TX-Wood Pr HS22120899	eserving Works			DATES RE	PORT
Sample ID	Client Samp ID	Collection Date	Leachate Date	Prep Date	Analysis Date	DF
Batch ID: 187463	B(0) Test Name : M	IETALS BY SW6020A			Matrix: Soil	
HS22120899-01	SO-1620-BLS-30(0-2.5)- 20221215	15 Dec 2022 09:50		19 Dec 2022 08:30	19 Dec 2022 20:00	1
HS22120899-02	SO-1620-BLS-30(12.5-15)- 20221215	15 Dec 2022 10:02		19 Dec 2022 08:30	19 Dec 2022 20:02	1
HS22120899-03	SO-1620-BLS-31(0-2.5)- 20221215	15 Dec 2022 10:15		19 Dec 2022 08:30	19 Dec 2022 20:04	1
HS22120899-04	SO-1620-BLS-31(7.5-10)- 20221215	15 Dec 2022 10:21		19 Dec 2022 08:30	19 Dec 2022 20:06	1
HS22120899-05	SO-1620-BLS-31(12.5-15)- 20221215	15 Dec 2022 10:27		19 Dec 2022 08:30	19 Dec 2022 20:08	1
HS22120899-06	SO-1620-BLS-30(7.5-10)- 20221215	15 Dec 2022 10:31		19 Dec 2022 08:30	19 Dec 2022 20:10	1
Batch ID: 187944	(0) Test Name : S	PLP METALS BY SW	6020A		Matrix: Soil	
HS22120899-02	SO-1620-BLS-30(12.5-15)- 20221215	15 Dec 2022 10:02	23 Dec 2022 08:00	29 Dec 2022 08:00	29 Dec 2022 18:23	1
Batch ID: R4242	71(0) Test Name : M	10ISTURE - ASTM D2	216		Matrix: Soil	
HS22120899-01	SO-1620-BLS-30(0-2.5)- 20221215	15 Dec 2022 09:50			16 Dec 2022 11:37	1
HS22120899-02	SO-1620-BLS-30(12.5-15)- 20221215	15 Dec 2022 10:02			16 Dec 2022 11:37	1
HS22120899-03	SO-1620-BLS-31(0-2.5)- 20221215	15 Dec 2022 10:15			16 Dec 2022 11:37	1
HS22120899-04	SO-1620-BLS-31(7.5-10)- 20221215	15 Dec 2022 10:21			16 Dec 2022 11:37	1
HS22120899-05	SO-1620-BLS-31(12.5-15)- 20221215	15 Dec 2022 10:27			16 Dec 2022 11:37	1
HS22120899-06	SO-1620-BLS-30(7.5-10)- 20221215	15 Dec 2022 10:31			16 Dec 2022 11:37	1

WorkOrder: InstrumentID:	HS22120899 ICPMS07				THOD DETEC EPORTING LI	
Test Code:	1312_METALS_HS					
Test Number:	SW6020A		Matrix Leachate	L I a		
Test Name:	SPLP Metals by SW6020A		Matrix: Leachate	Un		
Type Analyte		CAS	DCS Spike	DCS	MDL	PQL
A Arsenic		7440-38-2	0.00125	0.00119	0.000400	0.00500

WorkOrder: InstrumentID:	HS22120899 ICPMS07				METHOD DETECTION REPORTING LIMITS					
Test Code:	ICP_S_Low									
Test Number:	SW6020A		Matrix:	Solid	L I a li	t s: mg/Kg				
Test Name:	Metals by SW6020A	Wati IX.		Colla	Uni	Units: ^{mg/Kg}				
Type Analyte		CAS	DC	S Spike	DCS	MDL	PQL			
A Arsenic		7440-38-2		0.100	0.105	0.0700	0.500			

WorkOrder: InstrumentID:	HS22120899 Balance1				THOD DETEC		
Test Code:	MOIST_ASTM						
Test Number:	ASTM D2216		Matrix: Solid	Lla	its: wt%		
Test Name:	Moisture - ASTM D2216		watrix: Solid	Un	Units: ^{wt%}		
Type Analyte		CAS	DCS Spike	DCS	MDL	PQL	
A Percent Moisture		MOIST	0	0	0.0100	0.0100	

Date: 30-Dec-22

QC BATCH REPORT

Client:WSP GolderProject:Houston TX-Wood Preserving WorksWorkOrder:HS22120899

Batch ID: 187463 (0) Instrument: ICPMS07 Method: METALS BY SW6020A MBLK Sample ID: MBLK-187463 Units: mg/Kg Analysis Date: 19-Dec-2022 19:14 Client ID: Run ID: ICPMS07_424300 SeqNo: 7040139 PrepDate: 19-Dec-2022 DF·1 SPK Ref Control **RPD** Ref RPD Analyte Result MQL SPK Val %REC %RPD Limit Qual Value Limit Value Arsenic < 0.0697 0 4 9 8 LCS Sample ID: LCS-187463 Units: mg/Kg Analysis Date: 19-Dec-2022 19:16 Client ID: Run ID: ICPMS07 424300 SeqNo: 7040140 PrepDate: 19-Dec-2022 DF: 1 SPK Ref Control **RPD** Ref RPD Value %RPD Limit Qual %REC Analyte Result MQL SPK Val Value Limit Arsenic 9.728 0.498 9.968 0 97.6 80 - 120 MS Sample ID: HS22120651-01MS Analysis Date: 19-Dec-2022 19:22 Units: mg/Kg Run ID: ICPMS07 424300 SeqNo: 7040143 Client ID: PrepDate: 19-Dec-2022 DF: 1 SPK Ref Control **RPD** Ref RPD SPK Val %RPD Limit Qual %REC MQL Analyte Result Value Limit Value Arsenic 23.87 0.473 9.463 14.36 100 75 - 125 MSD Sample ID: HS22120651-01MSD Units: mg/Kg Analysis Date: 19-Dec-2022 19:24 Run ID: ICPMS07_424300 Client ID: SeqNo: 7040144 PrepDate: 19-Dec-2022 DF: 1 SPK Ref Control **RPD** Ref RPD SPK Val Analyte Result MQL Value %REC Limit Value %RPD Limit Qual Arsenic 23 12 0.480 9.602 14.36 91.2 75 - 125 23 87 3.21 20 PDS Sample ID: HS22120651-01PDS Units: mg/Kg Analysis Date: 19-Dec-2022 19:26 Client ID: Run ID: ICPMS07 424300 SeqNo: 7040145 PrepDate: 19-Dec-2022 DF: 1 SPK Ref Control **RPD** Ref RPD Analyte Result MQL SPK Val Value %REC Limit Value %RPD Limit Qual Arsenic 23.28 0.465 9.308 14.36 95.8 75 - 125 SD Sample ID: HS22120651-01SD Units: mg/Kg Analysis Date: 19-Dec-2022 19:20 Client ID: Run ID: ICPMS07 424300 SeqNo: 7040142 PrepDate: 19-Dec-2022 DF: 5 SPK Ref Control RPD Ref %D Analyte MQL SPK Val Value %REC Limit Value Limit Qual Result %D Arsenic 14.96 2.33 14.36 4.15 10 The following samples were analyzed in this batch: HS22120899-01 HS22120899-02 HS22120899-03 HS22120899-04 HS22120899-05 HS22120899-06

Date: 30-Dec-22

QC BATCH REPORT

Client:WSP GolderProject:Houston TX-Wood Preserving WorksWorkOrder:HS22120899

Batch ID:	187944 (0)	Instrum	ent:	ICPMS07	М	ethod: S	PLP METAL	_S BY SW60	20A
MBLK Client ID:	Sample ID:	MBLKP2-187944 Run I	D: ICP	Units: MS07_424997	mg/L SeqNo: 7	Ana 7055376		29-Dec-2022 29-Dec-2022	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		< 0.000400	0.00500						
MBLK Client ID:	Sample ID:	MBLKP3-187944 Run I	D: ICP	Units: MS07_425038	mg/L SeqNo: 7 SPK Ref	Ana 7057069		30-Dec-2022 29-Dec-2022 RPD Ref	
Analyte		Result	MQL	SPK Val	Value	%REC	Limit	Value	%RPD Limit Qual
Arsenic		< 0.000400	0.00500						
MBLK Client ID:	Sample ID:	MBLKP1-187944 Run I	D: ICP	Units: MS07_424997		Ana 7055373	PrepDate:	29-Dec-2022 29-Dec-2022	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		< 0.000400	0.00500						
MBLK Client ID:	Sample ID:	MBLK-187944 Run I	D: ICP	Units: MS07_424997	•	Ana 7055372	PrepDate:	29-Dec-2022 29-Dec-2022	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		< 0.000400	0.00500						
LCS Client ID:	Sample ID:		D: ICP	Units: MS07_424997	mg/L SeqNo: 7 SPK Ref		,	29-Dec-2022 29-Dec-2022 RPD Ref	
Analyte		Result	MQL	SPK Val	Value	%REC	Limit	Value	%RPD Limit Qual
Arsenic		0.05008	0.00500	0.05	0	100	80 - 120		
MS Client ID: Analyte	Sample ID:	HS22120805-19MS Run I Result	D: ICP MQL	MS07_424997	mg/L SeqNo: 7 SPK Ref Value		-	29-Dec-2022 29-Dec-2022 RPD Ref Value	
Arsenic		0.05269	0.00500	0.05	0.001121	103	80 - 120		

Date: 30-Dec-22

QC BATCH REPORT

Client:WSP GolderProject:Houston TX-Wood Preserving WorksWorkOrder:HS22120899

Batch ID:	187944(0)	Instru	nent:	ICPMS07	м	ethod: S	SPLP META	LS BY SW602	20A
MSD Client ID:	Sample ID:	HS22120805-19MSD Run		Units: //S07_424997	mg/L SeqNo: 7		,	29-Dec-2022 29-Dec-2022	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.05284	0.00500	0.05	0.001121	103	80 - 120	0.05269	0.284 20
PDS Client ID:	Sample ID:	HS22120805-19PDS Run	ID: ICPN	Units: //S07_424997	mg/L SeqNo: 7			29-Dec-2022 29-Dec-2022	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.1073	0.00500	0.1	0.001121	106	75 - 125		
SD	Sample ID:	HS22120805-19SD			mg/L		,	29-Dec-2022	
Client ID: Analyte		Run Result	MQL	IS07_424997 SPK Val	SeqNo: 7 SPK Ref Value	%REC	PrepDate: Control Limit	29-Dec-2022 RPD Ref Value	P. DF: 5 %D %D Limit Qual
Arsenic		< 0.00200	0.0250					0.001121	0 10
The followin	g samples were analyze	d in this batch: HS22120	0899-02						

			Date: 00 Dec 22							
Client: Project: WorkOrder:	Hou	P Golder Iston TX-Wood Pres 22120899	serving \	y Works QC					TCH REPORT	
Batch ID: R424	271(0)	Instrum	nent: E	Balance1	М	ethod: N	IOISTURE - A	STM D221	6	
DUP	Sample ID:	HS22120795-12DUP		Units:	wt%	Ana	lysis Date: 1	6-Dec-2022	2 11:37	
Client ID:		Run I	D: Balar	nce1_424271	SeqNo: 7	038665	PrepDate:		DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual	

 Percent Moisture
 16.7
 0.0100
 16
 4.28
 20

 The following samples were analyzed in this batch:
 HS22120899-01 HS22120899-05
 HS22120899-02 HS22120899-06
 HS22120899-03
 HS22120899-04
 HS22120899-04

ALS Houston, US

Client: Project: WorkOrder:	WSP Golder Houston TX-Wood Preserving Works HS22120899	QUALIFIERS, ACRONYMS, UNITS
Qualifier	Description	
*	Value exceeds Regulatory Limit	
а	Not accredited	
В	Analyte detected in the associated Method Blank above the Reporting Limit	
E	Value above quantitation range	
н	Analyzed outside of Holding Time	
J	Analyte detected below quantitation limit	
Μ	Manually integrated, see raw data for justification	
n	Not offered for accreditation	
ND	Not Detected at the Reporting Limit	
0	Sample amount is > 4 times amount spiked	
Р	Dual Column results percent difference > 40%	
R	RPD above laboratory control limit	
S	Spike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL/SDL	
Acronym	Description	
DCS	Detectability Check Study	
DUP	Method Duplicate	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MBLK	Method Blank	
MDL	Method Detection Limit	
MQL	Method Quantitation Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitaion Limit	
SD	Serial Dilution	
SDL	Sample Detection Limit	
TRRP	Texas Risk Reduction Program	
Unit Reported	Description	

mg/L Milligrams per Liter

CERTIFICATIONS, ACCREDITATIONS & LICENSES

Agency	Number	Expire Date
Arkansas	22-041-0	27-Mar-2023
California	2919 2022-2023	30-Apr-2023
Dept of Defense	L21-682	31-Dec-2023
Florida	E87611-36	30-Jun-2023
Illinois	2000322022-9	09-May-2023
Kansas	E-10352; 2022-2023	31-Jul-2023
Kentucky	123043, 2022-2023	30-Apr-2023
Louisiana	03087, 2022-2023	30-Jun-2023
Maryland	343, 2022-2023	30-Jun-2023
North Carolina	624-2022	31-Dec-2022
North Carolina	624-2023	31-Dec-2023
North Dakota	R-193 2022-2023	30-Apr-2023
Oklahoma	2022-141	31-Aug-2023
Texas	T104704231-22-29	30-Apr-2023
Utah	TX026932022-13	31-Jul-2023

					Sample Receipt Checklist
Work Order ID: HS2				Time Received:	<u>15-Dec-2022 14:15</u>
Client Name: PBV	N		Recei	ved by:	Corey Grandits
Completed By: /S/	Malcolm Burleson	15-Dec-2022 16:07	Reviewed by: /S/	Dane J. Wacasey	20-Dec-2022 09:37
	eSignature	Date/Time		eSignature	Date/Time
Matrices:	WATER		Carrier name:	<u>FedEx</u>	
Custody seals intact Custody seals intact VOA/TX1005/TX100 Chain of custody pre Chain of custody sig Samplers name pres Chain of custody ag Samples in proper of Sample containers in Sufficient sample vo All samples received	06 Solids in hermetically sea esent? gned when relinquished and sent on COC? rees with sample labels? container/bottle?	led vials? received?	Yes Ves Ves Ves Ves Ves Ves Ves Ves Ves V	No No No No No No No No No No	Not Present Not Present Not Present Not Present 1 Page(s) COC IDs:286643
Temperature(s)/The			2.5UC / 2.0C		IR31
Cooler(s)/Kit(s):			M RED		
Date/Time sample(s Water - VOA vials h Water - pH acceptat pH adjusted? pH adjusted by: Login Notes:	ave zero headspace?		12152022 1415 Yes Yes Yes	No No No	lo VOA vials submitted N/A ☑ N/A ☑
Client Contacted:		Date Contacted:		Person Conta	acted:
Contacted By:		Regarding:			
Comments:					
Corrective Action:					

(ALS)

Cincinnati, OH +1 513 733 5336

Everett, WA Holland, MI +1 425 356 2600 +1 616 399 6070

Fort Collins, CO

+1 970 490 1511

Chain of Custody Form

of

COC ID: 286643

Page

Houston, TX +1 281 530 5656

Middletown, PA +1 717 944 5541

			[LS Project	t Manager:					ALS \	Work	Order	#:			
	Customer Information			Project	Informat	tion]		Pa	ramete	r/Met	thod F	Reque	st for	Analy	sis	
Purchase Order	4300139407/Kevin Peterburs 1620-35	Project N	lame	Housto	n TX-Wo	od Preserv	ing Works	A	ICP S	Low (6020 A	rsenic	5636	002)				
Work Order		Project Nu	mber	1620-3	4-Rev0 S	SR 92688		в	MOIST	AST	И (Mois	ture%	5631	931)				
Company Name	WSP Golder	Bill To Com	pany	Union I	Pacific Ra	ailroad- A/P	>	С										
Send Report To	Eric Matzner	Invoice	Attn	Accour	nts Payab	vle		D										
Address	1601 S. MoPac Expressway Suite 325D	Ado	Address Stop 0750				E	-					208					
City/State/Zip	Austin, TX 78746	City/State	e/Zip	,	NE 681	790750		G										
Phone	(512) 671-3434	PI	none					н										
Fax	(512) 671-3446		Fax					1										
e-Mail Address	Eric_Matzner@golder.com	e-Mail Add	Iress					J	l									
No.	Sample Description	Date		me	Matrix	Pres.	# Bottles	A	8	С	D	E	F	G	Н	1	J	Hold
1 50-182	O-BISH306-25)-20221215	7/15/22	09	50 8	Soil	8	1	Х	X									
2 ~ ~	BCS-30/12-5-15)~1)	100	2	1			X	-y-									
3 2 1	· BLS-31(0-2.5)~		10	15				X	X									
4 5 1	× RLS-71(75-0)~	1	10%	21				X	4									
5 < <	B(S-21/12.5-15)		102	7	1			8	X									
6 .((BLS-30(75-10) V	V.	103	51	J	U	V	X	X									
7																		
8								1										
9																		
10																		
Sampler(s) Please P	latson/ Unton	Shipme			_	uired Turnar		Wk Da	WS	X 3 2 2 W	k Days	[]	2 <u>4 H</u>		esults I	Due Da	te:	
Relinquished by:	201 Date 2/15/22 T	ime: 1415	Receive	ed by:				Notes	" UP	RR HV	VPW 10	520-35	õ					
Relinquished by:	Date: 1	ime: Received by (Laboratory):			Cooler ID Cooler Temp. QC Package: (Check One Box Below)													
Logged by (Laboratory)		ïme:	Checked by (Laboratory):					Mi	<u>nei)</u> 19271	2.	ŝ		Level	II Std QC III Std QC IV SW84	URaw Da	te		P Checklist P Level IV
Preservative Key:	1-HCI 2-HNO3 3-H2SO4 4-NaC	0H 5-Na ₂ Ş ₂ O	3 6-	NaHSO₄	7-Othe	or 8-4°C	9-5035				Element and on the Designation		1 Other					

Copyright 2011 by ALS Environmental.

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.
 2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.
 3. The Chain of Custody is a legal document. All information must be completed accurately.